
2/20/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

2/20/23 2

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

2/20/23 3

2/20/23 4

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?

2/20/23 5

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

2/20/23 6

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

2/20/23 15

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList

and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of ('a
tree * 'a treeList)

2/20/23 16

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,

(More (TreeNode
(More (TreeLeaf 3,

Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

2/20/23 17

Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More

(TreeLeaf 5,
More
(TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

2/20/23 18

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

2/20/23 19

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

2/20/23 20

Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [x]

| (TreeNode list) -> list_fringe list
and list_fringe tree_list =

match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

2/20/23 21

Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]

2/20/23 22

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

2/20/23 23

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ ->
| TreeNode ts ->

2/22/23 24

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts + 1

2/22/23 25

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts + 1

and treeList_size ts =

2/22/23 26

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts + 1

and treeList_size ts =
match ts with Last t ->
| More (t, ts’) ->

2/22/23 27

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts + 1

and treeList_size ts =
match ts with Last t -> tree_size t
| More (t, ts’) -> tree_size t + treeList_size ts’

2/22/23 28

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts + 1

and treeList_size ts =
match ts with Last t -> tree_size t
| More (t, ts’) -> tree_size t + treeList_size ts’

2/20/23 29

Nested Recursive Types

type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

2/20/23 30

Nested Recursive Type Values

let ltree =
TreeNode(5,

[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);
TreeNode (5, [])]);;

2/20/23 31

Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(5,
[TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

2/20/23 32

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

2/20/23 33

Nested Recursive Type Values

5

3 2 5

1 7

2/20/23 34

Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)

-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees

-> flatten_tree labtree
@ flatten_tree_list labtrees;;

2/20/23 35

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n Nested recursive types lead to mutually

recursive functions

2/20/23 51

Why Data Types?

n Data types play a key role in:
n Data abstraction in the design of programs
n Type checking in the analysis of programs
n Compile-time code generation in the

translation and execution of programs
n Data layout (how many words; which are data

and which are pointers) dictated by type

2/20/23 52

Terminology

n Type: A type t defines a set of possible
data values
n E.g. short in C is {x| 215 - 1 ³ x ³ -215}
n A value in this set is said to have type t

n Type system: rules of a language
assigning types to expressions

2/20/23 53

Types as Specifications

n Types describe properties
n Different type systems describe different

properties, eg
n Data is read-write versus read-only
n Operation has authority to access data
n Data came from “right” source
n Operation might or could not raise an exception

n Common type systems focus on types describing
same data layout and access methods

2/20/23 55

Sound Type System

n If an expression is assigned type t, and it
evaluates to a value v, then v is in the set of
values defined by t

n SML, OCAML, Scheme and Ada have sound
type systems

n Most implementations of C and C++ do not

2/20/23 56

Strongly Typed Language

n When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed
n Eg: 1 + 2.3;;

n Depends on definition of “type error”

2/20/23 57

Strongly Typed Language

n C++ claimed to be “strongly typed”, but
n Union types allow creating a value at one

type and using it at another
n Type coercions may cause unexpected

(undesirable) effects
n No array bounds check (in fact, no

runtime checks at all)
n SML, OCAML “strongly typed” but still must

do dynamic array bounds checks, runtime
type case analysis, and other checks

2/20/23 58

Static vs Dynamic Types

• Static type: type assigned to an expression
at compile time

• Dynamic type: type assigned to a storage
location at run time

• Statically typed language: static type
assigned to every expression at compile time

• Dynamically typed language: type of an
expression determined at run time

2/20/23 59

Type Checking

n When is op(arg1,…,argn) allowed?
n Type checking assures that operations are

applied to the right number of arguments of
the right types
n Right type may mean same type as was

specified, or may mean that there is a
predefined implicit coercion that will be
applied

n Used to resolve overloaded operations

2/20/23 60

Type Checking

n Type checking may be done statically at
compile time or dynamically at run time

n Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

n Statically typed languages can do most
type checking statically

2/20/23 61

Dynamic Type Checking

n Performed at run-time before each
operation is applied

n Types of variables and operations left
unspecified until run-time
n Same variable may be used at different

types

2/20/23 62

Dynamic Type Checking

n Data object must contain type
information

n Errors aren’t detected until violating
application is executed (maybe years
after the code was written)

2/20/23 63

Static Type Checking

n Performed after parsing, before code
generation

n Type of every variable and signature of
every operator must be known at
compile time

2/20/23 64

Static Type Checking

n Can eliminate need to store type
information in data object if no dynamic
type checking is needed

n Catches many programming errors at
earliest point

n Can’t check types that depend on
dynamically computed values
n Eg: array bounds

2/20/23 65

Static Type Checking

n Typically places restrictions on
languages
n Garbage collection
n References instead of pointers
n All variables initialized when created
n Variable only used at one type

n Union types allow for work-arounds, but
effectively introduce dynamic type checks

