

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
\# let subk (x, y) $k=k(x-y)$;;
val subk : int * int -> (int -> 'a) -> 'a = <fun> \# let eqk (x, y) k=k(x=y); ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk $(x, y) k=k(x * y) ; ;$
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

add_three: a different order

- \# let add_triple $(x, y, z)=x+(y+z)$; ;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k =

Terms

- A function is in Direct Style when it returns its result back to the caller.
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

Nesting Continuations

\# let add_triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) = (x + y) + z; ;
val add_triple : int $*$ int $*$ int $->$ int $=<$ fun $>$
\# let add_triple (x, y, z) =let $p=x+y$ in $p+z ;$;
val add_triple : int * int * int -> int $=<$ fun >
\# let add_triple_k (x, y, z) k=
addk (x, y) (fun $\mathrm{p}->\operatorname{addk}(\mathrm{p}, \mathrm{z}) \mathbb{k})$;;
val add_triple_k: int * int * int -> (int -> 'a) -> 'a = <fun>
add_three: a different order

- \# let add_triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) = x + ($\mathrm{y}+\mathrm{z}$); ;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k= addk (y, z) (fun r -> addk(x,r) k)
add_three: a different order
- \# let add_triple $(x, y, z)=x+(y+z) ;$;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k=

$$
\operatorname{addk}(\mathrm{y}, \mathrm{z}) \text { (fun } \mathrm{r}->\operatorname{addk}(\mathrm{x}, \mathrm{r}) \mathrm{k})
$$

Recursive Functions

- Recall:

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial $(\mathrm{n}-1)$;;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120

Recursive Functions

\# let rec factorialk $\mathrm{nk}=$ eqk ($\mathrm{n}, \mathrm{0}$)
(fun b-> (* First computation *)
if b then $k 1$ (Passed value *)
else subk ($\mathrm{n}, 1$) (* Second computation *)
(fun s-> factorialk s (* Third computation *)
(fun r-> timesk (n,r)k))) (* Passed value *)
val factorialk : int -> (int -> 'a) -> 'a = <fun>
\# factorialk 5 report;;
120

- : unit = ()
add_three: a different order
- \# let add_triple $(x, y, z)=x+(y+z) ;$;
- How do we write add_triple_k to use a different order?
- let add_triple_k ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) k = addk (y, z) (fun $r->\operatorname{addk}(x, r)$ K)

Recursive Functions

\# let rec factorial $\mathrm{n}=$ let $b=(n=0)$ in (* First computation *) if b then 1 (* Returned value *)
else let $\mathrm{s}=\mathrm{n}-1$ in (* Second computation *)
let $r=$ factorial s in (* Third computation *)
n * r (* Returned value *) ;;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120

Recursive Functions

- To make recursive call, must build intermediate continuation to - take recursive value: r - build it to final result: n * r - And pass it to final continuation:
- times (n, r) $\mathrm{k}=\mathrm{k}(\mathrm{n} * \mathrm{r})$

Recursive Functions

\# let rec factorialk $n k=$
eqk (n, 0)
(fun b-> (* First computation *)
if b then $k 1$ (* Passed value ${ }^{*}$)
else subk ($\mathrm{n}, 1$) ($*$ Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun $r->$ timesk ($n, r) k$))) (* Passed value *)
val factorialk : int -> (int -> 'a) -> 'a = <fun> \# factorialk 5 report;;
120

- : unit $=()$

Example: CPS for length

let rec length list $=$ match list with []$->0$
| (a :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list $=$ match list with []$->0$
| (a :: bs) -> let r1 = length bs in $1+r 1$

Example: CPS for length
\#let rec length list = match list with [] -> 0
| (a :: bs) -> let $\mathrm{r} 1=$ length bs in $1+r 1$
What is the CSP version of this?
\#let rec lengthk list $k=$ match list with [] -> $k 0$
| x :: xs -> lengthk xs (fun r-> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
\# lengthk [2;4;6;8] report;;
4

- : unit = ()

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x : : xs -> x + sum xs ; ;
val sum : int list $->$ int $=<$ fun $>$
\# let rec sum list $=$ match list with [] -> 0

$$
\text { | x :: xs -> let r1 = sum xs in } x+r 1 ; ;
$$

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ; ;
val sum : int list $->$ int $=<$ fun $>$
\# let rec sum list $=$ match list with [] -> 0
| $x:: x s->$ let $r 1=$ sum $x s$ in $x+r 1 ;$;
val sum : int list -> int = <fun>
\# let rec sumk list $k=$ match list with [] -> k 0
| x :: xs -> sumk xs (fun r1 -> addk ($x, r 1$) k) ;;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
\# sumk [2;4;6;8] report;;
20

- : unit $\underset{2 / 8 / 23}{ }=()$

Example: all

\#let rec all $(p, I)=$ match I with [] -> true
$\mid(x:: x s)->$ let $b=p x$ in
if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b = p x in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k= match I with [] -> true

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true
$\mid(x:: x s)->$ let $b=p x$ in
if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) $\mathrm{k}=$ match I with [] -> k true | (x :: xs) ->

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b=pxin if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, l) $\mathrm{k}=$ match I with [] -> k true | (x :: xs) -> pk x
(fun $b->$ if b then else)

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b = p x in
if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true
| (x :: xs) -> let b=px in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true | (x :: xs) -> pk x

Example: all

\# let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let $b=p x$ in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true | (x :: xs) -> pk x
(fun $b->$ if b then allk ($p k, x s$) k else k false)
val allk: ('a -> (bool -> 'b) -> 'b) * 'a list -> (bool -> 'b) -> 'b = <fun>

Terminology: Review

- A function is in Direct Style when it returns its result back to the caller.
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- A Tail Call occurs when a function returns the result of another function call without any more computations (eg tail recursion)
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
- return f arg $\Rightarrow f$ arg k
- The function "isn' t going to return," so we need to tell it where to put the result.

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with
[] -> false
| x :: xs ->
if $(x=y)$
then true
else mem(y, xs); ;

After:

let rec memk (y, lst) $\mathrm{k}=$

$$
\text { (* rule } 1 *)
$$

CPS Transformation

- Step 1: Add continuation argument to any function definition:
- let f arg $=e \Rightarrow$ let f arg $k=e$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
- return $a \Rightarrow k a$
- Assuming a is a constant or variable.
- "Simple" = "No available function calls."

CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
- return op (f arg) \Rightarrow f arg (fun r -> k(op r))
- op represents a primitive operation
- return $g(f$ arg $) \Rightarrow f$ arg (fun r-> g r k)

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$
match Ist with
[] -> false

After:

let rec memk (y, l st) $\mathrm{k}=$
(* rule 1 *)
| x:: xs ->
if $(x=y)$
then true
k true (* rule 2 *)

Example

Before:

let rec mem $(y$, lst $)=$ match Ist with
[] -> false
| x :: xs ->
if $(x=y)$
then true
else mem(y, xs);;

After:

let rec memk (y, lst) $\mathrm{k}=$ (* rule 1 *) k false (* rule 2 *)

k true (* rule 2 *)

 memk (y , xs) k (* rule 3^{*})
Example

Before:

let rec mem $(y, l s t)=$ match Ist with
[] -> false
| x :: xs -> if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y,lst) $k=$
(* rule 1 *)
k false (* rule 2 *)
eqk (x, y)
(fun b->if b (* rule 4 *)
then k true (${ }^{*}$ rule $2{ }^{*}$)
else memk (y, xs) (* rule 3 *)

Example

Before:

let rec mem $(y, \mathrm{lst})=$ match Ist with
[] -> false
| x :: xs ->
if $(x=y)$
then true
else mem(y, xs); ;

After:

let rec memk $(y$, lst $) k=$ (* rule 1 *)
match Ist with
| [] -> k false (* rule 2 *)
|x:: xs ->
eqk (x, y)
(fun b->if b (* rule 4 *)
then k true ($*$ rule $2 *$)
else memk (y, xs) k (* rule 3 *)

After:
let rec add_listk Ist k =
(* rule 1 *)
match Ist with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
(* rule 3 *)
| x :: xs -> add_listk xs (fun r -> k ((+)x r)); ;

$$
\text { (* rule } 4 \text { *) }
$$

(* rule 4 *)

Before:

let rec add_list lst = match Ist with
[]-> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x (add_list xs);;

After:

let rec memk $(y, 1 s t) k=$
(* rule 1 *)
match Ist with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)
then k true (${ }^{*}$ rule $2 *$)
else memk (y, xs) k (* rule 3 *)

Example

After:

let rec memk (y, lst) $\mathrm{k}=$
(* rule 1 *)
k false (* rule 2 *)
eqk (x, y)
(fun b-> b (* rule 4*)
k true (* rule 2 *) memk (y, xs) (* rule 3 *)

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with
[]-> false
| x:: xs ->
if $(x=y)$
then true
else mem(y, xs);;

Example

