Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

let num_neg list =

let num_neg list =

let rec num_neg_aux list curr_neg =

let num_neg list = let rec num_neg_aux list curr_neg = match list with [] -> curr_neg | (x :: xs) -> num_neg_aux xs ?

let num_neg list = let rec num_neg_aux list curr_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num_neg_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num_neg_aux ? ?

let num_neg list = let rec num_neg_aux list curr_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num_neg_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num_neg_aux list ?

let num_neg list = let rec num_neg_aux list curr_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num_neg_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num_neg_aux list 0

Tail Recursion - length

How can we write length with tail recursion? let length list = let rec length_aux list acc_length = match list accumulated value with [] -> acc_length | **(**X∷xs) -> length_aux xs (1 + acc_length) in length_aux list 0 initial acc value combing operation

length, fold_left

let length list = fold_left (fun acc -> fun x -> 1 + acc) // comb op 0 // initial accumulator cell value list

let num_neg list =
 fold_left
 ? // comb op

? // initial accumulator cell value
?

let num_neg list =
 fold_left
 ? // comb op

0 // initial accumulator cell value ?

let num_neg list = fold left (fun curr_neg -> fun x -> if x < 0 then $1 + curr_neg$ else curr_neg) // comb op **0** // initial accumulator cell value ?

let num_neg list = fold left (fun curr_neg -> fun x -> if x < 0 then $1 + curr_neg$ else curr_neg) // comb op **0** // initial accumulator cell value list

fold_left f a [x_1 ; x_2 ;...; x_n] = f(...(f (f a x_1) x_2)...) x_n

fold_right f [x_1 ; x_2 ;...; x_n] b = f x_1 (f x_2 (...(f x_n b)...))

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means here it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Continuations

- A programming technique for all forms of "non-local" control flow:
 - non-local jumps
 - exceptions
 - general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an extra argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

Continuation Passing Style

 Writing procedures such that all procedure calls take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

Continuation Passing Style

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics
- Possible intermediate state in compiling functional code

Why CPS?

- Makes order of evaluation explicitly clear
- Allocates variables (to become registers) for each step of computation
- Essentially converts functional programs into imperative ones
 - Major step for compiling to assembly or byte code
- Tail recursion (and forward recursion) easily identified

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
 - Exceptions and exception handling
 - Co-routines
 - (pseudo, aka green) threads

Example

Simple reporting continuation:

let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> 'a) -> 'a = <fun>
addk (22, 20) report;;
42

- : unit = ()

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
- # let subk (x, y) k = k(x y);; val subk : int * int -> (int -> 'a) -> 'a = <fun> # let eqk (x, y) k = k(x = y);; val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun> # let timesk (x, y) k = k(x * y);; val timesk : int * int -> (int -> 'a) -> 'a = <fun>

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;val add_triple : int * int * int -> int = <fun> # let add_triple (x,y,z)=let p = x + y in p + z; val add triple : int * int * int -> int = <fun> # let add_triple_k (x, y, z) k = addk (x, y) (fun p -> addk (p, z) \overline{k});; val add_triple_k: int * int * int -> (int -> 'a) -> $a = \langle fun \rangle$

add_three: a different order

- # let add_triple (x, y, z) = x + (y + z);;
- How do we write add_triple_k to use a different order?

let add_triple_k (x, y, z) k =

add_three: a different order

- # let add_triple (x, y, z) = x + (y + z);;
- How do we write add_triple_k to use a different order?

let add_triple_k (x, y, z) k = addk (y,z) (fun r -> addk(x,r) k)

- # let rec factorial n =
 if n = 0 then 1 else n * factorial (n 1);;
 val factorial : int -> int = <fun>
 # factorial 5;;
- -: int = 120

Terms

- A function is in Direct Style when it returns its result back to the caller.
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

let rec factorial n =let b = (n = 0) in (* First computation *) if b then 1 (* Returned value *) else let s = n - 1 in (* Second computation *) let r = factorial s in (* Third computation *) **n** * r (* Returned value *) ;; val factorial : int -> int = <fun> # factorial 5;;

- : int = 120

let rec factorialk n k = eqk (n, 0) (fun b -> (* First computation *) if b then k 1 (* Passed value *) else subk (n, 1) (* Second computation *) (fun s -> factorialk s (* Third computation *) (fun r -> timesk (n, r) k))) (* Passed value *) val factorialk : int -> (int -> 'a) -> 'a = <fun> # factorialk 5 report;; 120

- : unit = ()

- To make recursive call, must build intermediate continuation to
 - take recursive value: r
 - build it to final result: n * r
 - And pass it to final continuation:
 - times (n, r) k = k (n * r)

let rec factorialk n k = eqk (n, 0) (fun b -> (* First computation *) if b then k 1 (* Passed value *) else subk (n, 1) (* Second computation *) (fun s -> factorialk s (* Third computation *) (fun r -> timesk (n, r) k))) (* Passed value *) val factorialk : int -> (int -> 'a) -> 'a = <fun> # factorialk 5 report;; 120

- : unit = ()

Example: CPS for length

###