# Programming Languages and Compilers (CS 421) 

## Elsa L Gunter 2112 SC, UIUC

 https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

## Forward Recursion: Examples

\# let rec double_up list =
match list with [ ] -> [ ]
(x :: xs $)^{\prime}->$ (x :: x :: double_up xs);;
val double/ up : 'a list $->+$ 'a list $=$ <tu nz
Base Case Operator Recursive Call
\# let rec poor_rev list =
match list
with [] -> []
| (x: :xs) ${ }^{-\gg}$ let $\mathrm{r}=$ poor rev xs in $\mathrm{r} @[\mathrm{x}]$; ;
val poor_rev : 'a list ->'a list = <fund Base Case

Operator Recursive Call

## Recursing over lists

\# let rec fold_right f list b = match list
with [] -> b
The Primitive
| (x :: xs) -> fx (fold_right fxs b);; Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();
therehi- : unit $=()$

## Forward Recursion: Examples

\# let rec double_up list =
match list
with [ ] -> [ ]
(x :: xs) ${ }^{\prime}->$ (x :: x :: double_up xs);;
val double/up : 'a list $->+$ 'a list $=$ <funz
Base Case Operator Recursive Call
\# let double_up =
fold_right (fun $x->$ fun $r->x:: x:: \mid r)$ list []
Operator Recursive result Base Case
\# double_up ["a";"b"];;

- : string list = ["a"; "a"; "b"; "b"]


## Folding Recursion : Length Example

\# let rec length list = match list
with [ ] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;;; (* Cons case *)
val length : 'a list -> int = <fun>
\# let length list =
fold_right (fun a -> fun r-> $1+r$ ) list 0;;
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4


## Encoding Forward Recursion with Fold

\# let rec multList_fr list =

ACT 2

- let rec multList_fr list = match list


## with [] -> 1

| (x::xs) -> let r = (multList_fr ns) in

$$
(x * r)
$$

## Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun $x->$ fun $p->x * p$ )
list 1;;
val multList : int list -> int = <fun> \# multList [2;4;6];;
- : int = 48


## Extra Material

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 =
val append : 'a list -> 'a list -> 'a list = <fun>

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with
val append : 'a list -> 'a list -> 'a list = <fun>

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>

## Base Case

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2 x::xs ->
val append : 'a list -> 'a list -> 'a list = <fun>

## Base Case

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2| x::xs -> x :: append xs list2;; val append : 'a list -> 'a list -> 'a list = <fun>

## Base Case

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2 x::xs -> x :: append xs list2;; val append : 'a list -> 'a/list -> 'aNist = <fun> Base Case

Operation
Recursive Call

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2| x::xs -> x :: append xs list2;; val append : 'a list -> 'a/list -> 'alist = <fun>

\section*{| Base Case | Operation | Recursive Call |
| :--- | :--- | :--- |}

\# let append list1 list2 = fold_right (fun $x->$ fun $y->x:$ y) list1 list2; ;
val append : 'a list -> 'a list -> 'a list = <fun>

## Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [ ] -> list2| x::xs -> x :: append xs list2;; val append : 'a list -> 'a/list -> 'alist = <fun>

\section*{| Base Case | Operation | Recursive Call |
| :--- | :--- | :--- |}

\# let append list1 list2 = fold_right (fun $x->$ fun $y->x:$ y) list1 list2; ; val append : 'a list -> 'a list -> 'a list = <fun> \# append $[1 ; 2 ; 3][4 ; 5 ; 6] ;$;

- : int list = [1; 2; 3; 4; 5; 6]


## Terminology

- Available: An operation that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if $(h x)$ then (fun $x->f x$ ) else $(g(x+x)$ )

Not available

## Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=g 5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$


## End of Extra Material

## Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if $(h x)$ then (fun $x->f x$ ) else $(g(x+x)$ )

Not available

## Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of $e$
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$


## Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function


## Tail Recursion - length

- How can we write length with tail recursion? let length list =
let rec length_aux list acc_length = match list
with [ ] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0


## Extra Material

## Your turn: num_neg - tail recursive

\# let num_neg list =

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg =
in num_neg_aux ? ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] ->
| (x :: xs) ->
in num_neg_aux ? ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
in num_neg_aux ? ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs ?
in num_neg_aux ? ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if $x<0$ then $1+$ curr_neg else curr_neg)
in num_neg_aux ? ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if $x<0$ then $1+$ curr_neg else curr_neg)
in num_neg_aux list ?

## Your turn: num_neg - tail recursive

\# let num_neg list =
let rec num_neg_aux list curr_neg = match list with [] -> curr_neg
| (x :: xs) ->
num_neg_aux xs
(if $x<0$ then $1+$ curr_neg else curr_neg)
in num_neg_aux list 0

## End of Extra Material

## Tail Recursion - length

- How can we write length with tail recursion? let length list =
let rec length_aux list acc_length = match list accumulated value
with [ ] -> acc_length
| (X::xs) ->
length_aux xs (1+acc_length) in length_aux list 0 initial acc value combing operation


## Iterating over lists

\# let rec fold_left fa list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> (fun s -> print_string s))
()
["hi"; "there"];;
hithere- : unit $=()$

## length, fold_left

let length list =
fold_left
(fun acc -> fun x -> $1+$ acc) // comb op
0 // initial accumulator cell value
list

## Extra Material

## Your turn: num_neg, fold_left

let num_neg list = fold_left
? // comb op

## ? // initial accumulator cell value

?

## Your turn: num_neg, fold_left

let num_neg list = fold_left
? // comb op

## 0 // initial accumulator cell value <br> ?

## Your turn: num_neg, fold_left

let num_neg list = fold_left
(fun curr_neg -> fun x -> if $x<0$ then $1+$ curr_neg else curr_neg) // comb op
0 // initial accumulator cell value
?

## Your turn: num_neg, fold_left

let num_neg list = fold_left
(fun curr_neg -> fun x -> if $x<0$ then $1+$ curr_neg else curr_neg) // comb op
0 // initial accumulator cell value
list

## End of Extra Material

## 350 minutes

## Extra Material

## poor_rev - forward recursive

\# let rec poor_rev list = match list with [] -> []
| (x :: xs) -> poor_rev xs @ [x]

## Tail Recursion - Example

\# let rec rev_aux list revlist =
match list with [ ] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [ ];;
val rev : 'a list -> 'a list = <fun>

- What is its running time?


## Comparison

- poor_rev [1;2;3] =
- (poor_rev [2;3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev [ ]) @ [3]) @ [2]) @ [1] =
- (([ ] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([ ] @ [2])) @ [1] =
- [3;2] @ [1] =
- $3::([2]$ @ [1]) =
- 3 :: (2:: ([ ] @ [1])) = [3; 2; 1]


## Comparison

- rev $[1 ; 2 ; 3]=$
- rev_aux $[1 ; 2 ; 3][$ ] =
- rev_aux [2;3] [1] =
- rev_aux [3] [2;1] =
- rev_aux [ ] [3;2;1] = [3;2;1]


## Folding - Tail Recursion

- \# let rev list =
fold_left
(fun I -> fun x -> x :: I) //comb op
[] //accumulator cell
list


## End of Extra Material

## Folding

\# let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;; val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left f a $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right $f$ list $b=$ match list
with [ ] -> b | (x :: xs) -> f x (fold_right f xs b) ;;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

## Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means here it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition


## Extra Material

## How long will it take?

- Remember the big-O notation from CS 225 and CS 374
- Question: given input of size $n$, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power


## How long will it take?

Common big-O times:

- Constant time $O$ (1)
- input size doesn't matter
- Linear time $O(n)$
- double input $\Rightarrow$ double time
- Quadratic time $O\left(n^{2}\right)$
- double input $\Rightarrow$ quadruple time
- Exponential time $O\left(2^{n}\right)$
- increment input $\Rightarrow$ double time


## Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial


## Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs@[x];;
val poor_rev : 'a list -> 'a list = <fun>


## Exponential running time

- Poor worst-case running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear


## Exponential running time

\# let rec slow $\mathrm{n}=$
if $\mathrm{n}<=1$
then 1
else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>
\# List.map slow [1;2;3;4;5;6;7;8;9];;

- : int list = [1; 3; 5; 9; 15; 25; 41; 67; 109]


## Recall: Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function


## Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if $(h x)$ then (fun $x->f x$ ) else $(g(x+x)$ )

Not available

## Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$


## An Important Optimization

- When a function call is made,

Normal
call
 the return address needs to be saved to the stack so we know to where to return when the call is finished

- What if $f$ calls $g$ and $g$ calls $h$, but calling $h$ is the last thing $g$ does (a tail cal)?


## An Important Optimization

- When a function call is made,
 the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if $f$ calls $g$ and $g$ calls $h$, but calling $h$ is the last thing $g$ does (a tail cal)?
- Then $h$ can return directly to $f$ instead of $g$


## End of Extra Material

## Continuations

- A programming technique for all forms of "non-local" control flow:
- non-local jumps
- exceptions
- general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO


## Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an extra argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done


## Continuation Passing Style

- Writing procedures such that all procedure calls take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)


## Continuation Passing Style

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics
- Possible intermediate state in compiling functional code


## Why CPS?

- Makes order of evaluation explicitly clear
- Allocates variables (to become registers) for each step of computation
- Essentially converts functional programs into imperative ones
- Major step for compiling to assembly or byte code
- Tail recursion (and forward recursion) easily identified


## Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads


## Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline( ) );; val report : int -> unit $=$ <fun>
- Simple function using a continuation:
\# let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> 'a) -> 'a = <fun> \# addk $(22,20)$ report;;
2
- : unit $=()$


## Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
\# let subk ( $x, y$ ) k = k(x-y);
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk ( $x, y$ ) k = k( $x=y$ ); ;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk ( $x, y$ ) $k=k(x$ * y); ;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>


## Nesting Continuations

\# let add_triple $(x, y, z)=(x+y)+z ;$ val add_triple : int * int * int -> int $=<$ fun $>$ \# let add_triple $(x, y, z)=$ let $p=x+y$ in $p+z ;$; val add_triple : int * int * int -> int = <fun> \# let add_triple_k ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) k = addk ( $\mathrm{x}, \mathrm{y}$ ) fun $\mathrm{p}->\operatorname{addk}(\mathrm{p}, \mathrm{z}) \mathbb{⿴}$ ); ;
val add_triple_k: int * int * int -> (int -> 'a) -> 'a = <fun>

## add_three: a different order

- \# let add_triple ( $x, y, z$ ) = x + (y + z);;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k =


## add_three: a different order

- \# let add_triple ( $x, y, z$ ) = x + (y + z);;
- How do we write add_triple_k to use a different order?
- let add_triple_k ( $x, y, z$ ) k = addk ( $\mathrm{y}, \mathrm{z}$ ) (fun r -> addk(x,r) k)

