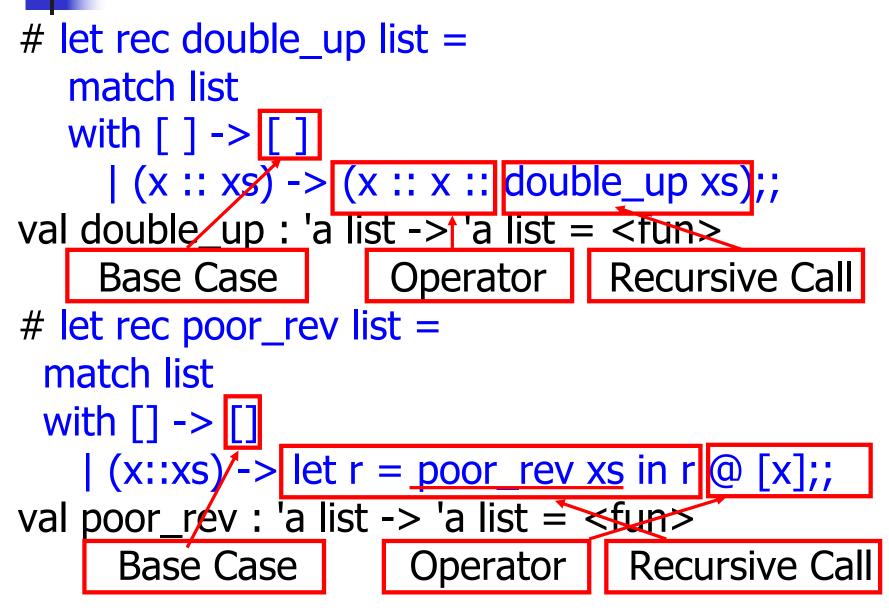
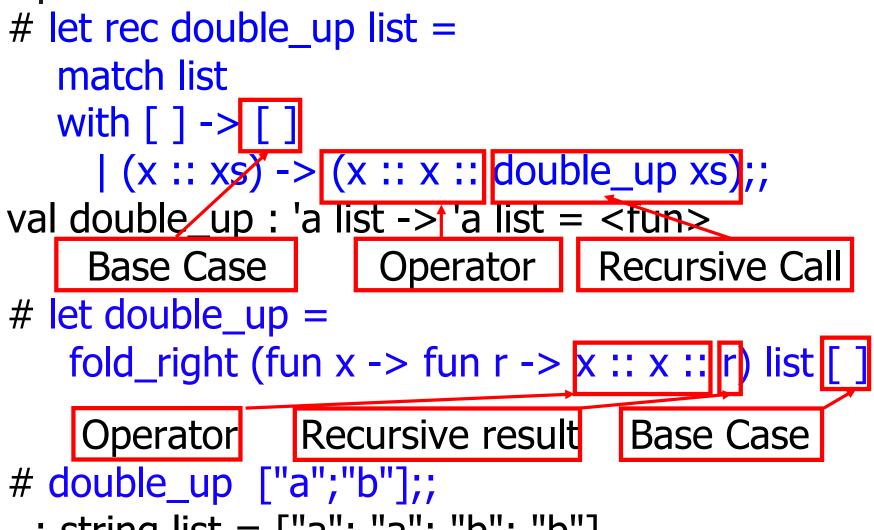
## Programming Languages and Compilers (CS 421)


## Elsa L Gunter 2112 SC, UIUC



https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha


## Forward Recursion: Examples



## **Recursing over lists**

```
# let rec fold_right f list b =
 match list
 with [] -> b
                                               The Primitive
 (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy
val fold right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
  <fun>
# fold_right
   (fun s \rightarrow fun () \rightarrow print_string s)
   ["hi"; "there"]
   ();;
therehi- : unit = ()
```

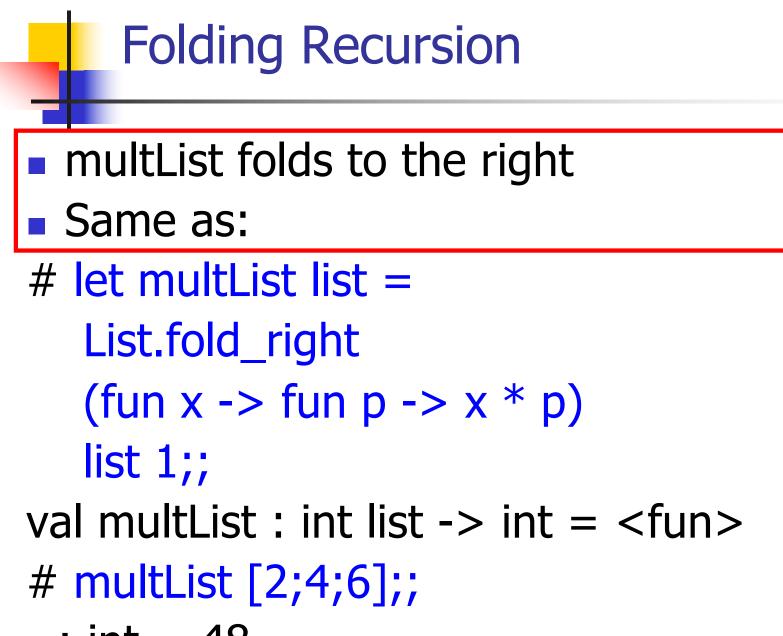
## Forward Recursion: Examples



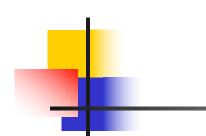
- : string list = ["a"; "a"; "b"; "b"]

## Folding Recursion : Length Example

# let rec length list = match list with  $[] \rightarrow 0$  (\* Nil case \*) |a::bs -> 1 + length bs;; (\* Cons case \*)val length : 'a list -> int = <fun> # let length list = fold\_right (fun a -> fun r -> 1 + r) list 0;; val length : 'a list -> int = <fun> # length [5; 4; 3; 2];;


-: int = 4




# let rec multList\_fr list =

## ACT 2

## let rec multList\_fr list = match list with [] -> 1 | (x::xs) -> let r = (multList\_fr ns) in (x \* r)



-: int = 48

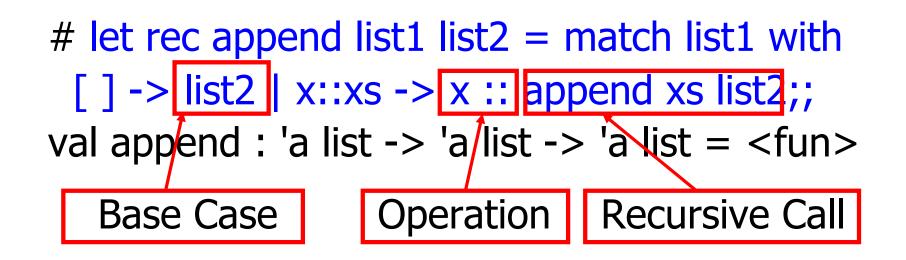


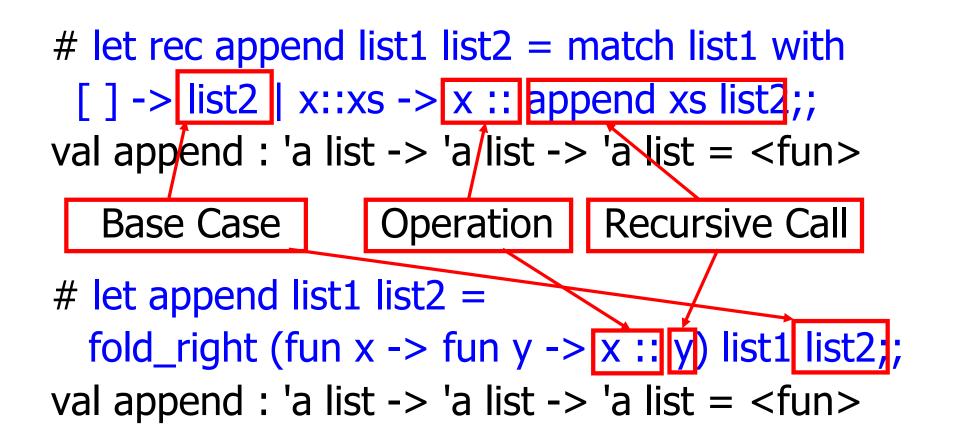
# Extra Material

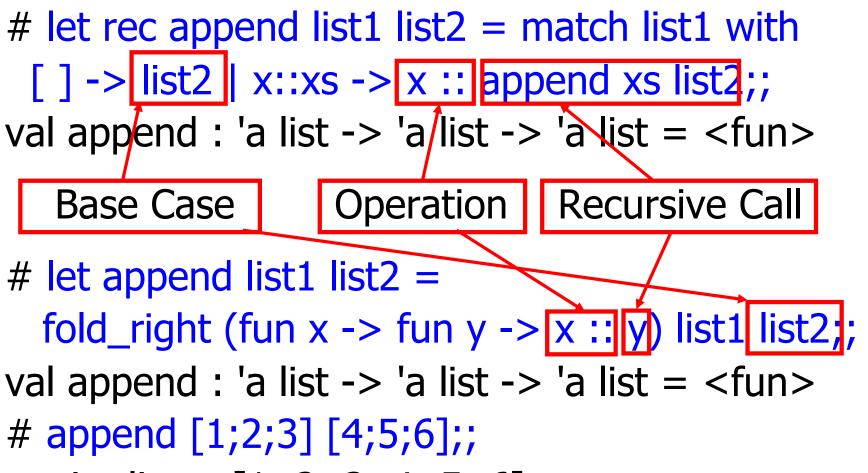
# let rec append list1 list2 =

val append : 'a list -> 'a list -> 'a list = <fun>

# let rec append list1 list2 = match list1 with


val append : 'a list -> 'a list -> 'a list = <fun>


# let rec append list1 list2 = match list1 with
 [] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>


# let rec append list1 list2 = match list1 with
[] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case

# let rec append list1 list2 = match list1 with
[] -> list2 | x::xs ->
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case

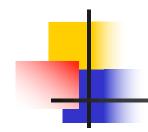
# let rec append list1 list2 = match list1 with
[]->list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case







- : int list = [1; 2; 3; 4; 5; 6]


## Terminology

- Available: An operation that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
  - if (h x) then f x else (x + g x)
  - if (h x) then (fun x -> f x) else (g (x + x))

Not available

## Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
  - if (x>3) then x + 2 else x 4
    let x = g 5 in x + 4
- Tail Call: A function call that occurs in tail position
  - if (h x) then f x else  $(x \pm g x)$



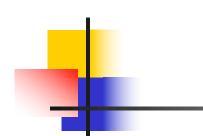
# End of Extra Material

## Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
  - if (h x) then f x else (x + g x)
  - if (h x) then (fun x -> f x) else (g (x + x))

Not available

## Terminology


- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
  - if (x>3) then x + 2 else x 4
    let x = 5 in x + 4
- Tail Call: A function call that occurs in tail position
  - if (h x) then f x else  $(x \pm g x)$

## **Tail Recursion**

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
  - May require an auxiliary function

## Tail Recursion - length

How can we write length with tail recursion? let length list = let rec length\_aux list acc\_length = match list with [] -> acc\_length | (x::xs) -> length\_aux xs (1 + acc\_length) in length aux list 0



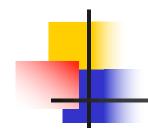
# Extra Material

# let num\_neg list =

#### # let num\_neg list =

let rec num\_neg\_aux list curr\_neg =

## 


## 

# # let num\_neg list = let rec num\_neg\_aux list curr\_neg = match list with [] -> curr\_neg | (x :: xs) -> num\_neg\_aux xs ?

## # let num\_neg list = let rec num\_neg\_aux list curr\_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num\_neg\_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num\_neg\_aux ? ?

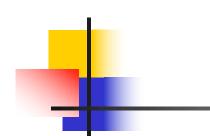
## # let num\_neg list = let rec num\_neg\_aux list curr\_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num\_neg\_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num\_neg\_aux list ?

## # let num\_neg list = let rec num\_neg\_aux list curr\_neg = match list with $[] -> curr_neg$ | (x :: xs) -> num\_neg\_aux xs (if x < 0 then $1 + curr_neg$ else curr neg) in num\_neg\_aux list 0



# End of Extra Material

## Tail Recursion - length


How can we write length with tail recursion? let length list = let rec length\_aux list acc\_length = match list accumulated value with [] -> acc\_length | **(**X∷xs) -> length\_aux xs (1 + acc\_length) in length\_aux list 0 initial acc value combing operation 2/12/23

#### Iterating over lists

```
# let rec fold left f a list =
 match list
 with [] -> a
 |(x :: xs) \rightarrow fold_left f (f a x) xs;;
val fold left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
  <fun>
# fold left
  (fun () -> (fun s -> print_string s))
  ["hi"; "there"];;
hithere- : unit = ()
```

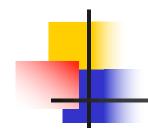
#### length, fold\_left

# let length list = fold\_left (fun acc -> fun x -> 1 + acc) // comb op 0 // initial accumulator cell value list



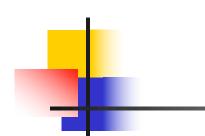
## Extra Material

let num\_neg list =
 fold\_left
 ? // comb op


? // initial accumulator cell value
?

let num\_neg list =
 fold\_left
 ? // comb op

## 0 // initial accumulator cell value ?


let num\_neg list = fold left (fun curr\_neg -> fun x -> if x < 0 then  $1 + curr_neg$  else curr\_neg) // comb op **0** // initial accumulator cell value ?

let num\_neg list = fold left (fun curr\_neg -> fun x -> if x < 0 then  $1 + curr_neg$  else curr\_neg) // comb op **0** // initial accumulator cell value list



## End of Extra Material

350 minutes



## Extra Material

#### poor\_rev – forward recursive

#### 

#### **Tail Recursion - Example**

# let rec rev\_aux list revlist =
 match list with [ ] -> revlist
 | x :: xs -> rev\_aux xs (x::revlist);;
val rev\_aux : 'a list -> 'a list -> 'a list = <fun>

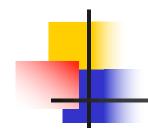
# let rev list = rev\_aux list [ ];;
val rev : 'a list -> 'a list = <fun>

What is its running time?

#### 2/12/23

- 3 :: (2:: ([] @ [1])) = [3; 2; 1]
- **3** :: ([2] @ [1]) =
- [3;2] @ [1] =
- (3:: ([]@[2]))@[1] =
- ([3] @ [2]) @ [1] =
- (([]@[3])@[2])@[1]) =
- $(((poor_rev []) @ [3]) @ [2]) @ [1] =$
- (poor\_rev [2;3]) @ [1] =
  ((poor\_rev [3]) @ [2]) @ [1] =
- poor\_rev [1;2;3] =

#### Comparison


#### Comparison

- rev\_aux [2;3] [1] =
- rev\_aux [3] [2;1] =
- rev\_aux [ ] [3;2;1] = [3;2;1]

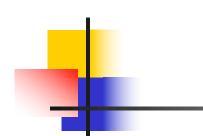
#### Folding - Tail Recursion

# let rev list =

fold\_left
(fun I -> fun x -> x :: I) //comb op
//accumulator cell
list



## End of Extra Material




fold\_left f a  $[x_1; x_2; ...; x_n] = f(...(f (f a x_1) x_2)...)x_n$ 

fold\_right f [ $x_1$ ;  $x_2$ ;...; $x_n$ ] b = f  $x_1$ (f  $x_2$  (...(f  $x_n$  b)...))

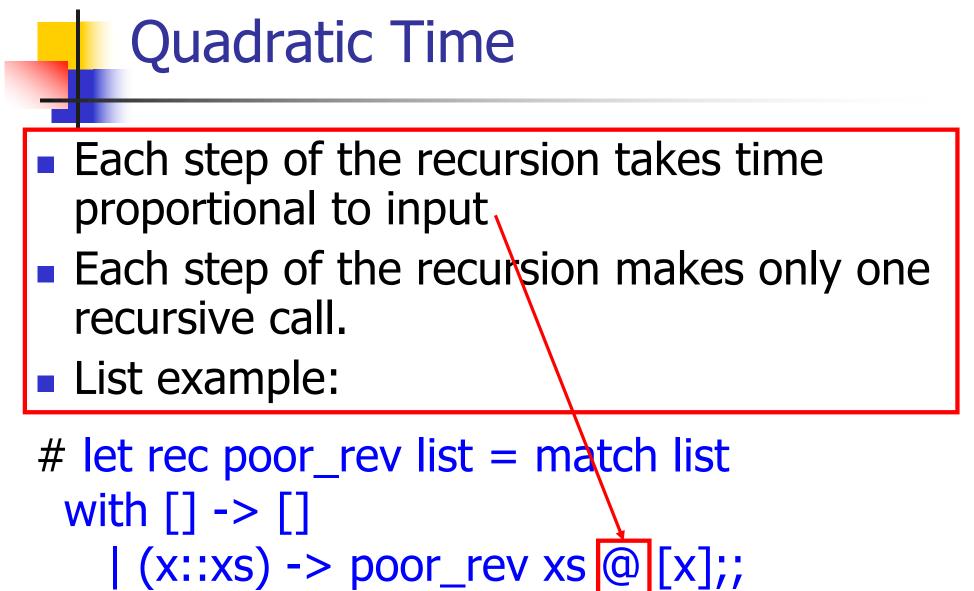
#### Folding

- Can replace recursion by fold\_right in any forward primitive recursive definition
  - Primitive recursive means here it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold\_left in any tail primitive recursive definition



## Extra Material

#### How long will it take?


- Remember the big-O notation from CS 225 and CS 374
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

#### How long will it take?

Common big-O times: • Constant time O(1)input size doesn't matter Linear time O(n) • double input  $\Rightarrow$  double time • Quadratic time  $O(n^2)$ • double input  $\Rightarrow$  quadruple time • Exponential time  $O(2^n)$ • increment input  $\Rightarrow$  double time

#### Linear Time

- Expect most list operations to take linear time O(n)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial



val poor\_rev : 'a list -> 'a list = <fun>

#### Exponential running time

- Poor worst-case running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

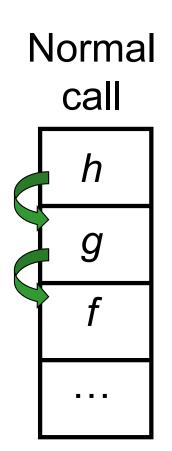
#### Exponential running time

# let rec slow n =if n < = 1then 1 else 1+slow (n-1) + slow(n-2);; val slow : int -> int = <fun> # List.map slow [1;2;3;4;5;6;7;8;9];; -: int list = [1; 3; 5; 9; 15; 25; 41; 67; 109]

#### **Recall: Tail Recursion**

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
  - May require an auxiliary function

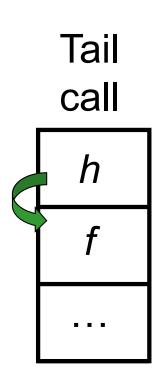
#### Terminology


- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
  - if (h x) then f x else (x + g x)
  - if (h x) then (fun x -> f x) else (g (x + x))

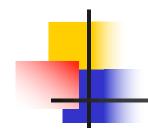
Not available

#### Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
  - if (x>3) then x + 2 else x 4
    let x = 5 in x + 4
- Tail Call: A function call that occurs in tail position
  - if (h x) then f x else  $(x \pm g x)$


#### An Important Optimization




When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished

What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?

#### An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g



## End of Extra Material

#### Continuations

- A programming technique for all forms of "non-local" control flow:
  - non-local jumps
  - exceptions
  - general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO

#### Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an extra argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

#### **Continuation Passing Style**

 Writing procedures such that all procedure calls take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

#### **Continuation Passing Style**

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics
- Possible intermediate state in compiling functional code

#### Why CPS?

- Makes order of evaluation explicitly clear
- Allocates variables (to become registers) for each step of computation
- Essentially converts functional programs into imperative ones
  - Major step for compiling to assembly or byte code
- Tail recursion (and forward recursion) easily identified

#### **Other Uses for Continuations**

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
  - Exceptions and exception handling
  - Co-routines
  - (pseudo, aka green) threads

#### Example

Simple reporting continuation:

# let report x = (print\_int x; print\_newline());;
val report : int -> unit = <fun>

Simple function using a continuation:
# let addk (a, b) k = k (a + b);;
val addk : int \* int -> (int -> 'a) -> 'a = <fun>
# addk (22, 20) report;;

- : unit = ()

#### Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
- # let subk (x, y) k = k(x y);; val subk : int \* int -> (int -> 'a) -> 'a = <fun> # let eqk (x, y) k = k(x = y);; val eqk : 'a \* 'a -> (bool -> 'b) -> 'b = <fun> # let timesk (x, y) k = k(x \* y);; val timesk : int \* int -> (int -> 'a) -> 'a = <fun>

#### **Nesting Continuations**

# let add\_triple (x, y, z) = (x + y) + z;;val add\_triple : int \* int \* int -> int = <fun> # let add\_triple (x,y,z)=let p = x + y in p + z; val add triple : int \* int \* int -> int = <fun> # let add\_triple\_k (x, y, z) k = addk (x, y) (fun p -> addk (p, z) $\overline{k}$ );; val add\_triple\_k: int \* int \* int -> (int -> 'a) ->  $a = \langle fun \rangle$ 

#### add\_three: a different order

- # let add\_triple (x, y, z) = x + (y + z);;
- How do we write add\_triple\_k to use a different order?

let add\_triple\_k (x, y, z) k =

#### add\_three: a different order

- # let add\_triple (x, y, z) = x + (y + z);;
- How do we write add\_triple\_k to use a different order?

let add\_triple\_k (x, y, z) k = addk (y,z) (fun r -> addk(x,r) k)