
2/12/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

2/12/23 2

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call

2/12/23 3

Recursing over lists

let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

The Primitive
Recursion Fairy

2/12/23 4

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let double_up =

fold_right (fun x -> fun r -> x :: x :: r) list []
Operator Recursive result Base Case

double_up ["a";"b"];;
- : string list = ["a"; "a"; "b"; "b"]

2/12/23 5

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
let length list =
fold_right (fun a -> fun r -> 1 + r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4

2/12/23 7

Encoding Forward Recursion with Fold

let rec multList_fr list =

ACT 2

n let rec multList_fr list =
match list

with [] -> 1
| (x::xs) -> let r = (multList_fr ns) in

(x * r)

2/12/23 8

2/12/23 9

Folding Recursion

n multList folds to the right
n Same as:
let multList list =

List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

Extra Material

2/12/23 10

2/12/23 11

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

2/12/23 12

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

2/12/23 13

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 14

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 15

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 16

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 17

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 18

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x -> fun y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 19

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x -> fun y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

2/12/23 20

Terminology

n Available: An operation that can be executed
by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

2/12/23 21

Terminology

n Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e
n if (x>3) then x + 2 else x - 4
n let x = g 5 in x + 4

n Tail Call: A function call that occurs in tail
position
n if (h x) then f x else (x + g x)

End of Extra Material

2/12/23 22

2/12/23 23

Terminology

n Available: A function call that can be
executed by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

2/12/23 24

Terminology

n Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e
n if (x>3) then x + 2 else x - 4
n let x = 5 in x + 4

n Tail Call: A function call that occurs in tail
position
n if (h x) then f x else (x + g x)

2/12/23 25

Tail Recursion

n A recursive program is tail recursive if all
recursive calls are tail calls

n Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n May require an auxiliary function

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list
with [] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0

2/12/23 26

Extra Material

2/12/23 28

Your turn: num_neg – tail recursive

let num_neg list =

2/12/23 29

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

2/12/23 30

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] ->
| (x :: xs) ->

in num_neg_aux ? ?

2/12/23 31

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

in num_neg_aux ? ?

2/12/23 32

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs ?

in num_neg_aux ? ?

2/12/23 33

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux ? ?

2/12/23 34

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list ?

2/12/23 35

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list 0

2/12/23 36

End of Extra Material

2/12/23 37

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list accumulated value
with [] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0
initial acc value combing operation

2/12/23 38

2/12/23 39

Iterating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left
(fun () -> (fun s -> print_string s))
()
["hi"; "there"];;

hithere- : unit = ()

length, fold_left

let length list =
fold_left
(fun acc -> fun x -> 1 + acc) // comb op
0 // initial accumulator cell value
list

2/12/23 40

Extra Material

2/12/23 41

Your turn: num_neg, fold_left

let num_neg list =
fold_left
? // comb op

? // initial accumulator cell value
?

2/12/23 42

Your turn: num_neg, fold_left

let num_neg list =
fold_left
? // comb op

0 // initial accumulator cell value
?

2/12/23 43

Your turn: num_neg, fold_left

let num_neg list =
fold_left
(fun curr_neg -> fun x ->

if x < 0 then 1 + curr_neg else curr_neg)
// comb op

0 // initial accumulator cell value
?

2/12/23 44

Your turn: num_neg, fold_left

let num_neg list =
fold_left
(fun curr_neg -> fun x ->

if x < 0 then 1 + curr_neg else curr_neg)
// comb op

0 // initial accumulator cell value
list

2/12/23 45

End of Extra Material

2/12/23 46

2/12/23 47

350 minutes

Extra Material

2/12/23 48

poor_rev – forward recursive

let rec poor_rev list =
match list with [] -> []

| (x :: xs) -> poor_rev xs @ [x]

2/12/23 49

2/12/23 50

Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

n What is its running time?

2/12/23 51

Comparison

n poor_rev [1;2;3] =
n (poor_rev [2;3]) @ [1] =
n ((poor_rev [3]) @ [2]) @ [1] =
n (((poor_rev []) @ [3]) @ [2]) @ [1] =
n (([] @ [3]) @ [2]) @ [1]) =
n ([3] @ [2]) @ [1] =
n (3:: ([] @ [2])) @ [1] =
n [3;2] @ [1] =
n 3 :: ([2] @ [1]) =
n 3 :: (2:: ([] @ [1])) = [3; 2; 1]

2/12/23 52

Comparison

n rev [1;2;3] =
n rev_aux [1;2;3] [] =
n rev_aux [2;3] [1] =
n rev_aux [3] [2;1] =
n rev_aux [] [3;2;1] = [3;2;1]

2/12/23 53

Folding - Tail Recursion

- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l) //comb op

[] //accumulator cell
list

End of Extra Material

2/12/23 54

2/12/23 55

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

2/12/23 56

Folding

n Can replace recursion by fold_right in any
forward primitive recursive definition
n Primitive recursive means here it only recurses

on immediate subcomponents of recursive data
structure

n Can replace recursion by fold_left in any tail
primitive recursive definition

Extra Material

2/12/23 58

2/12/23 59

How long will it take?

n Remember the big-O notation from CS 225
and CS 374

n Question: given input of size n, how long to
generate output?

n Express output time in terms of input size,
omit constants and take biggest power

2/12/23 60

How long will it take?

Common big-O times:
n Constant time O (1)

n input size doesn’t matter
n Linear time O (n)

n double input Þ double time
n Quadratic time O (n2)

n double input Þ quadruple time
n Exponential time O (2n)

n increment input Þ double time

2/12/23 61

Linear Time

n Expect most list operations to take
linear time O (n)

n Each step of the recursion can be done
in constant time

n Each step makes only one recursive call
n List example: multList, append
n Integer example: factorial

2/12/23 62

Quadratic Time

n Each step of the recursion takes time
proportional to input

n Each step of the recursion makes only one
recursive call.

n List example:
let rec poor_rev list = match list

with [] -> []
| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

2/12/23 63

Exponential running time

n Poor worst-case running times on input of

any size

n Each step of recursion takes constant time

n Each recursion makes two recursive calls

n Easy to write naïve code that is exponential

for functions that can be linear

2/12/23 64

Exponential running time

let rec slow n =
if n <= 1
then 1
else 1+slow (n-1) + slow(n-2);;

val slow : int -> int = <fun>
List.map slow [1;2;3;4;5;6;7;8;9];;
- : int list = [1; 3; 5; 9; 15; 25; 41; 67;
109]

2/12/23 65

Recall: Tail Recursion

n A recursive program is tail recursive if all
recursive calls are tail calls

n Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n May require an auxiliary function

2/12/23 66

Terminology

n Available: A function call that can be
executed by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

2/12/23 67

Terminology

n Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e
n if (x>3) then x + 2 else x - 4
n let x = 5 in x + 4

n Tail Call: A function call that occurs in tail
position
n if (h x) then f x else (x + g x)

2/12/23 68

Normal
call

h

g

f

…

An Important Optimization

n When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

2/12/23 69

Tail
call

h

f

…

An Important Optimization

n When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

n Then h can return directly to f
instead of g

End of Extra Material

2/12/23 70

2/12/23 72

Continuations

n A programming technique for all forms
of “non-local” control flow:
n non-local jumps
n exceptions
n general conversion of non-tail calls to tail

calls
n Essentially it’s a higher-order function

version of GOTO

2/12/23 73

Continuations

n Idea: Use functions to represent the control
flow of a program

n Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n Function receiving the result called a
continuation

n Continuation acts as “accumulator” for work
still to be done

2/12/23 74

Continuation Passing Style

n Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

2/12/23 75

Continuation Passing Style

n A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n A formalization of non-local control flow in
denotational semantics

n Possible intermediate state in compiling
functional code

Why CPS?

n Makes order of evaluation explicitly clear
n Allocates variables (to become registers) for each

step of computation
n Essentially converts functional programs into

imperative ones
n Major step for compiling to assembly or byte

code
n Tail recursion (and forward recursion) easily

identified

2/12/23 76

Other Uses for Continuations

n CPS designed to preserve order of
evaluation

n Continuations used to express order of
evaluation

n Can be used to change order of evaluation
n Implements:

n Exceptions and exception handling
n Co-routines
n (pseudo, aka green) threads

2/12/23 77

2/12/23 78

Example

n Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

n Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
2
- : unit = ()

Simple Functions Taking Continuations

n Given a primitive operation, can convert it to
pass its result forward to a continuation

n Examples:
let subk (x, y) k = k(x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

2/12/23 79

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

2/12/23 80

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =

2/12/23 81

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

2/12/23 82

