
1/25/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

1/25/23 2

Save the Environment!

n A closure is a pair of an environment and an
association of a pattern (e.g. (v1,…,vn)
giving the input variables) with an
expression (the function body), written:

< (v1,…,vn) ® exp, r >
n Where r is the environment in effect when

the function is defined (for a simple
function)

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x ® v: {x ® v} + r

1/25/23 3

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x ® v: {x ® v} + r

n Update: r1+ r2 has all the bindings in r1 and
all those in r2 that are not rebound in r1

{x ® 2, y ® 3, a ® “hi”} + {y ® 100, b ® 6}
= {x ® 2, y ® 3, a ® “hi”, b ® 6}

1/26/23 4

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =

1/25/23 5

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)

1/26/23 6

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)
n To evaluate a tuple (e1,…,en),

n Evaluate each ei to vi, right to left for Ocaml
n Then make value (v1,…,vn)

1/26/23 7

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

1/25/23 8

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure

1/26/23 9

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r

1/26/23 10

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r
n To evaluate a conditional expression:

if b then e1 else e2
n Evaluate b to a value v
n If v is True, evaluate e1
n If v is False, evaluate e2

1/26/23 11

1/25/23 12

Evaluation of Application with Closures

n Given application expression f e
n In Ocaml, evaluate e to value v
n In environment r, evaluate left term to closure,

c = <(x1,…,xn) ® b, r’>
n (x1,…,xn) variables in (first) argument
n v must have form (v1,…,vn)

n Update the environment r’ to
r’’ = {x1 ® v1,…, xn ®vn}+ r’

n Evaluate body b in environment r’’

1/25/23 58

Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

1/25/23 59

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
| n -> (2 * n -1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

1/25/23 60

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are

somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

1/25/23 61

Lists

n List can take one of two forms:
n Empty list, written []
n Non-empty list, written x :: xs

n x is head element, xs is tail list, :: called
“cons”

n Syntactic sugar: [x] == x :: []
n [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

1/25/23 62

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

1/25/23 63

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:

let bad_list = [1; 3.2; 7];;
^^^

This expression has type float but is here
used with type int

1/25/23 64

Question

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

1/25/23 65

Answer

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§ 3 is invalid because of last pair

1/25/23 66

Functions Over Lists

let rec double_up list =
match list
with [] -> [] (* pattern before ->,

expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

1/25/23 67

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

1/25/23 69

Structural Recursion

n Functions on recursive datatypes (eg lists)
tend to be recursive

n Recursion over recursive datatypes generally
by structural recursion
n Recursive calls made to components of structure

of the same recursive type
n Base cases of recursive types stop the recursion

of the function

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =

1/25/23 70

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =
match list with

1/25/23 71

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with

1/25/23 72

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with [] ->
| (a :: bs) ->

1/25/23 73

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is empty?

let rec length list =
match list with [] -> 0
| (a :: bs) ->

1/25/23 74

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) ->

1/25/23 75

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

1/25/23 76

1/25/23 77

Structural Recursion : List Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case
n Cons case recurses on component list bs

Same Length

n How can we efficiently answer if two lists
have the same length?

1/25/23 78

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
1/25/23 79

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

1/25/23 82

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

1/25/23 83

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

1/25/23 84

1/25/23 85

Higher-Order Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

1/25/23 86

Higher-Order Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

1/25/23 87

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

1/25/23 88

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

1/25/23 89

Folding Recursion

n Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n Computes (2 * (4 * (6 * 1)))

1/25/23 90

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case, 0 is the base value
n Cons case recurses on component list bs
n What do multList and length have in common?

