

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $\mathrm{x}=\mathrm{e}$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1} $\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "\}+\{y \rightarrow 100, b \rightarrow 6\}$ $=\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "^{\prime}, b \rightarrow 6\right\}$

Evaluating expressions in OCaml

- To evaluate uses of +, _ , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x=e 1$ in e2
- Eval e1 to v, then eval e2 using $\{x \rightarrow v\}+\rho$
- To evaluate a conditional expression:
if b then e1 else e2
- Evaluate b to a value v
- If v is True, evaluate $e 1$
- If v is False, evaluate e2

Save the Environment!

- A closure is a pair of an environment and an association of a pattern (e.g. (v1,...,vn) giving the input variables) with an expression (the function body), written:

$$
<(v 1, \ldots, v n) \rightarrow \exp , \rho>
$$

- Where ρ is the environment in effect when the function is defined (for a simple function)

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and $=$
- To evaluate a variable, look it up in $\rho: \rho(\mathrm{v})$
- To evaluate a tuple ($\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$),
- Evaluate each e_{i} to v_{i}, right to left for Ocaml
- Then make value ($\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$)

Evaluation of Application with Closures

- Given application expression fe
- In Ocaml, evaluate e to value v
- In environment ρ, evaluate left term to closure, $c=\left\langle\left(x_{1}, \ldots, x_{n}\right) \rightarrow b, \rho^{\prime}\right\rangle$
- $\left(x_{1}, \ldots, x_{n}\right)$ variables in (first) argument
- v must have form (v_{1}, \ldots, v_{n})
- Update the environment ρ^{\prime} to $\rho^{\prime \prime}=\left\{x_{1} \rightarrow v_{1}, \ldots, x_{n} \rightarrow v_{n}\right\}+\rho^{\prime}$
- Evaluate body bin environment $\rho^{\prime \prime}$

Recursive Functions

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+\text { nthsq }(n-1) ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

1/25/23

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Recursion Example

Compute n^{2} recursively using:

$$
n^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $\mathrm{n}=\quad$ (* rec for recursion ${ }^{*}$)
match n
(* pattern matching for cases *)
with $0->0$
(* base case $*$)
$\mid n->(2 * n-1) \quad$ (* recursive case *)

+ nthsq ($\mathrm{n}-1$) $;$; (* recursive call *)
val nthsq : int -> int $=$ <fun >
\# nthsq 3;;
: int = 9
Structure of recursion similar to inductive proof
$1 / 25 / 23$

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: $[\mathrm{x}]==\mathrm{x}$:: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

1/25/23

Lists are Homogeneous

\# let bad_list = [1; 3.2; 7];
Characters 19-22:
let bad_list = [1; 3.2; 7];;

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Functions Over Lists

\# let rec double_up list = match list
with [] -> [] (* pattern before ->, expression after ${ }^{*}$)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let fib5_2 = double_up fib5;;
val fib5_2 : int list $=[8 ; 8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$; $1 ; 1 ; \overline{1}]$

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Question: Length of list

- Problem: write code for the length of the list - How to start? let rec length list =

Question: Length of list

- Problem: write code for the length of the list - How to start?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length list =
match list with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty?
let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list - What patterns should we match against?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list - What result do we give when list is empty? let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty? let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

Structural Recursion : List Example
\# let rec length list = match list with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list bs

1/25/23

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| ($\mathrm{y}:: \mathrm{ys}$) -> same_length $x s y s)$
1/25/23

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =
match list
with [] -> []
| x:: xs -> (2 * x) :: doubleList xs
- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =
match list

$$
\begin{aligned}
& \text { with }[]->[] \\
& \text { | } \mathrm{x}:: \mathrm{xS}->(2 * x): \text { doubleList } \mathrm{xs}
\end{aligned}
$$

\# let rec map f list $=$
match list
with [] -> []
| (h::t) -> (f h) :: (map ft); ;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x-1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun> \# doubleList [2;3;4];;
- : int list = $44 ; 6 ; 8]$

Folding Recursion

Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;

- : int = 48
- Computes (2 * (4 * (6 * 1)))

Higher-Order Functions Over Lists

\# let rec map f list $=$ match list
with [] $->$ []
| (h: :t) $->(\mathrm{f} \mathrm{h})::(\operatorname{map~ft})$;
val map: ('a-> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x-1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

1/25/23
80

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list = List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;
- : int list = $[4 ; 6 ; 8]$
- Same function, but no explicit recursion

Folding Recursion : Length Example

\# let rec length list = match list with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?

