Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

1/21/23

https://courses.engr.illinois.edu/cs421/sp2023

i Functions

let plus_ twon=n+ 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-1 int =19

let plus_two = n->n+2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- int =16

| First definition syntactic sugar for second|

1/21/23

i Using a nameless function

(funx->x*3)5;; (* An application *)

-:int =15

((funy->y +.2.0), (funz->z*3));;
(* As data *)

- . (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

1/21/23

i Values fixed at declaration time

#letx = 12:; >
val x :int = 12

let plus_x yf=\y + X;:
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

1/21/23

i Values fixed at declaration time

#letx = 12;;

val X 1 int = 12

#letplus Xy =vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

1/21/23

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;

What is the result this time?

1/21/23

i Values fixed at declaration time

#letx =7;; (* New declaration, nat an
update *)

val X : int =7

8
' plus_xJ3;;

What is the result this time?

1/21/23

i Values fixed at declaration time

#let x =7;; (* New declaration, not an
update *)
val X :int = 7

plus_x 3;;
-:int =15

1/21/23

i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

s Answer: a closure

1/21/23 10

i Save the Environment!

= A closureis a pair of an environment and an
association of a formal parameter (the input
variables)* with an expression (the function
body), written:

f— < (vl,...,vn) > exp, pr >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

* Will come back to the “formal parameter”

1/21/23 11

i Closure for plus_x

= When plus_x was defined, had environment:

pplus_x — {, X — 12, }
= Recall: let plus_xy =y + X

is really let plus_ x =funy ->y + x
= Closure for funy -> vy + x:
<y —>YVY + X, Pplus_x >
= Environment just after plus_x defined:

{plus_x — <y =¥ + X, pplus_x >+ + Pplus_x

1/21/23

12

1/2

1/23

Now it's your turn

You should be able to
complete ACT1

i Functions with more than one argument

let add threexyz=x+vy + z;;
val add three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy->(funz->x+vy+2);;
val add three : int -> int -> int -> int = <fun>

| Again, first syntactic sugar for second |

1/21/23 15

i Functions with more than one argument

let add_threexyz=x+vy + z;;
val add three : int -> int -> int -> int = <fun>
= What is the value of add_three?

s Let pagd three D€ the environment before the
declaration

= Remember:

let add_three =

funx-> (funy->(funz->x+vy+2));;

Value: <x ->funy -> (funz-> X + Yy + Z), padd three >

1/21/23 16

i Partial application of functions

let add _threexyz=x+vy + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-:int =12

#h7;;

-1 int = 16

1/21/23

17

i Partial application of functions

let add _threexyz=x+vy + z;;

let h = add_three 5 4;;

val h :int -> int = <fun>

#h3;;

-int = 12

#h7;

- 1int =16

- Partial application also called sectioning |

1/21/23 18

i Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

- int =10

thrice (fun s -> "Hil " ~ s) "Good-bye!";;
- . string = "Hi! Hi! Hi! Good-bye!"

1/21/23

19

i Tuples as Values

/] p7 ={c — 4, test > 3.7, b5
a—>1 b-5} i:s;')?"
let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

/[pg =1{s — (5 "hi", 3.2),
c > 4, test > 3.7,
a—>1,b—5}

b5
a=>1 test & 3.7
c=2>4

s = (5, ’hi’, 3.2)

1/21/23 21

i Pattern Matching with Tuples

/ P8 — {S — (51 "hi", 32)/ a>1 P> test & 3.7
Cc — 4, test —» 3.7, cD 4

a—>1b—-5)
let =s;: (* (a,b,c) is a pattern *
vala:int=>5 b > “hi"
_] test = 3.7
val b : string = "hi"
val c : float = 3.2
let x = 2, 9.3;; (* tuples don't requi

Ocaml *) ~ 35 b test>37

_ s = (5, ’hi", 3.2) ¢ > 3.2
val x : int * float = (2, 9.3) x> (2,9.3)
1/21/23 22

s = (5, ’hi’, 3.2)

s (5,°hi",3.2) C> 32

i Nested Tuples

(*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int *int * int = (1, 4, 62)

val st : string = "bye"

1/21/23 23

i Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-:int=7

let double x = (x,Xx);;

val double : 'a -> 'a * 'a = <fun>

double 3:;

-rint*int = (3, 3)

double "hi":;

- 1 string * string = ("hi", "hi")

1/21/23

24

i Match Expressions

let triple_to_pair triple =

triple *Each clause: pattern on
left, expression on right
(0, X, ¥) -> (X,)
*Each x, y has scope of
(x, 0, y) (X, Y) only its clause
(X, ¥,)->(X,y);; |+Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

1/21/23 25

i Closure for plus_pair

= ASSUME pyus_pair WS the environment just
before plus_pair defined

= Closure for plus_pair:
<(h,m) > n+m, Pplus_pair”™
= Environment just after plus_pair defined:

{plus_pair —» <(n,m) - n + m, pyys pair >

T Pplus_pair

1/21/23 27

i Save the Environment!

= A closureis a pair of an environment and an
association of a pattern (e.g. (v1,...,vn)
giving the input variables) with an
expression (the function body), written:

< (vl,...,vn) > exp, p >

= Where p is the environment in effect when
the function is defined (for a simple
function)

1/21/23 28

