
1/18/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Programming Languages & Compilers

1/18/23 2

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Three Main Topics of the Course

Programming Languages & Compilers

1/18/23 3

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

1/18/23 4

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

I : New Programming Paradigm

Programming Languages & Compilers

1/18/23 5

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

1/18/23 6

Lexing and
Parsing

Type
Systems

Interpretation

II : Language Translation

Programming Languages & Compilers

1/18/23 7

Lexing and
Parsing

Type
Systems

Interpretation

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

1/18/23 8

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

III : Language Semantics

Programming Languages & Compilers

1/18/23 9

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

CS422 CS426
CS477

Order of Evaluation

Specification to Implementation
1/18/23 12

Contact Information - Elsa L Gunter

n Office: 2112 SC
n Office hours:

n TBD
n Today 11:00am – 11:50 pm
n Also by appointment

n Email: egunter@illinois.edu
n Do not use DM in Campuswir if you want a

timely response. It does not email me
notifications of that and it make take days for
a response.

Course TAs

1/18/23 13

Paul
Krogmeier

Amrith
Balachander

Yerong Li

Aruhan Jun YangShaurya
Gomber

Sizhuo Li

Tomoko
Sakurayama

Mike Qin

1/18/23 14

Course Website

n https://courses.engr.illinois.edu/cs421/sp2023
n Main page - summary of news items
n Policy - rules governing course
n Lectures - syllabus and slides
n MPs - information about assignments
n Exams – Syllabi and review material for Midterms

and finals
n Unit Projects - for 4 credit students
n Resources - tools and helpful info
n FAQ

Some Course References

n No required textbook
n Some suggested references

1/18/23 15 1/18/23 16

Some Course References

n No required textbook.
n Pictures of the books on previous slide
n Essentials of Programming Languages (2nd Edition)

by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

n Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

n Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

n Additional ones for Ocaml given separately

1/18/23 17

Course Grading

n Assignments 10%
n Web Assignments (WA) (~3-6%)
n MPs (in Ocaml) (~4-7%)
n All WAs and MPs Submitted in PrairieLearn
n May include necessary reading material
n Late submission:

n 48 hours, unless otherwise specified
n capped at 80% of total

1/18/23 18

Course Grading

n Four quizzes, in class - 10%
n 3 Midterms - 15% each

n Taken in the Computer Based Testing Facility (CBTF)
n Self-scheduled from a four-day period

n Final: 35%, May 9, 7:00pm – 10:00pm
n Percentages are approximate

1/18/23 19

Course Assingments – WA & MP

n You may discuss assignments and their solutions with
others

n You may work in groups, but you must list members
with whom you worked if you share solutions or
detailed solution outlines

n Each student must write up and turn in their
own solution separately
n No direct copy-paste – type it yourself from your

understanding
n You may look at examples from class and other similar

examples from any source – cite appropriately
n Note: University policy on plagiarism still holds - cite

your sources if not the sole author of your solution
n Do not have to cite course notes or me

1/18/23 20

OCAML

n Locally:
n Will use ocaml inside VSCode inside PrairieLearn

problems this semester
n Globally:

n Main OCAML home: http://ocaml.org
n To install OCAML on your computer see:

http://ocaml.org/docs/install.html
n To try on the web: https://try.ocamlpro.com
n More notes on this later

1/18/23 21

References for OCaml

n Supplemental texts (not required):

n The Objective Caml system release 4.05, by
Xavier Leroy, online manual

n Introduction to the Objective Caml
Programming Language, by Jason Hickey

n Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’Reilly
n Available online from course resources

1/18/23 23

Features of OCAML

n Higher order applicative language
n Call-by-value parameter passing
n Modern syntax
n Parametric polymorphism

n Aka structural polymorphism
n Automatic garbage collection
n User-defined algebraic data types

1/18/23 24

Why learn OCAML?

n Many features not clearly in languages you have
already learned

n Assumed basis for much research in programming
language research

n OCAML is particularly efficient for programming tasks
involving languages (eg parsing, compilers, user
interfaces)

n Industrially Relevant:
n Jane Street trades billions of dollars per day using OCaml

programs
n Major language supported at Bloomberg

n Similar languages: Microsoft F#, SML, Haskell, Scala
1/18/23 25

Session in OCAML

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop; expressions and

declarations *)
2 + 3;; (* Expression *)

- : int = 5
3 < 2;;
- : bool = false

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)
val x : int = 5
let test = 3 < 2;;
val test : bool = false
let a = 1 let b = a + 4;; (* Sequence of dec

*)
val a : int = 1
val b : int = 5

1/18/23 26 1/18/23 27

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

1/18/23 28

Functions

let plus_two n = n + 2;;

plus_two 17;;
- : int = 19

Extra Material

1/18/23 30

1/18/23 31

No Overloading for Basic Arithmetic Operations

15 * 2;;
- : int = 30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)
^^^^

Error: This expression has type float but an
expression was expected of type

int
1.35 +. 0.23;;
- : float = 1.58

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;; (* No Implicit Coercion *)
^^^

Error: This expression has type float but an
expression was expected of type

int

1/18/23 32

1/18/23 33

Booleans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false
// r7 = {c ® 4, test ® 3.7, a ® 1, b ® 5}
if b > a then 25 else 0;;
- : int = 25

1/18/23 34

Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;
- : bool = false
3 > 1 || 4 > 6;;
- : bool = true
(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true
not (4 > 6);;
- : bool = true

1/18/23 35

Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"
print_string "Hello world\n";; (* has type unit *)
Hello world
- : unit = ()
(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye
- : int = 25

1/18/23 36

Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

1/18/23 37

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
| n -> (2 * n -1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

1/18/23 38

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are

somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

End of Extra Material

1/18/23 39 1/18/23 41

Environments

n Environments record what value is associated with
a given identifier

n Central to the semantics and implementation of a
language

n Notation
r = {name1 ® value1, name2® value2, …}

Using set notation, but describes a partial function
n Often stored as list, or stack

n To find value start from left and take first match

Environments

1/18/23 42

X è 3

y è 17

name è “Steve”

b è true

region è (5.4, 3.7)

id è {Name = “Paul”,
Age = 23,
SSN = 999888777}

. . .

1/18/23 43

Global Variable Creation

2 + 3;; (* Expression *)
// doesn’t affect the environment
let test = 3 < 2;; (* Declaration *)
val test : bool = false
// r1 = {test ® false}
let a = 1 let b = a + 4;; (* Seq of dec *)
// r2 = {b ® 5, a ® 1, test ® false}

Environments

1/18/23 44

b è 5

test è true

a è 1

New Bindings Hide Old

// r2 = {b ® 5, a ® 1, test ® false}
let test = 3.7;;

n What is the environment after this
declaration?

1/18/23 45

New Bindings Hide Old

// r2 = {b ® 5, a ® 1, test ® false}
let test = 3.7;;

n What is the environment after this
declaration?

// r3 = {test ® 3.7, a ® 1, b ® 5}

1/18/23 46

Environments

1/18/23 47

b è 5

test è 3.7

a è 1

Now it’s your turn

You should be able to do WA1-IC
Problem 1 , parts (* 1 *) - (* 3 *)

1/18/23 48

