Sample Questions for Midterm 2 (CS 421 Spring 2023)

Some of these questions may be reused for the exam.

1. Put the following function in full continuation passing style:
let rec sum_odd $n=$ if $\mathbf{n}<=0$ then 0 else $((2 * n)-1)+\operatorname{sum}$ _odd $(n-1) ;$; Use addk, subk, mulk, leqk, for the CPS forms of the primitive operations (+, - , *, <=). All other procedure calls and constructs must be put in CPS
2. Review and be able to write any give clause of cps_exp from MP5. On the exam, you would be given all the information you were given in MP5.
3. Given the following rules for CPS transformation:
[[x]] K => K x
[[c]] $K=>K c$
[[let $x=$ e1 in e2]] $K=>$ [[e1]] (FN x -> [[e2]] K)
$[[e 1 \oplus e 2]] K=>[[e 2]](F N a->[[e 1]](F N b->K(b \oplus a)))$
where e1and $e 2$ are OCaml expressions, K is any continuation, x is a variable and c is a constant, give the step-by-step transformation of

$$
\text { [[let } x=2+3 \text { in } x-4]] \text { REPORTk }
$$

4. Write the definition of an OCAML variant type (algebraic data type) reg_exp to express abstract syntax trees for regular expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon is a reg_exp, a parenthesized reg_exp is a reg_exp, the concatenation of two reg_exp's is a reg_exp, the "choice" of two reg_exp's is a reg_exp, and the Kleene star of a reg_exp is a reg_exp.
5. Given the following OCAML datatype:
type int_seq $=$ Null I Snoc of (int_seq *int) write a tail-recursive function in OCAML all_pos : int_seq $->$ bool that returns true if every integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false otherwise. Thus all_pos (Snoc(Snoc(Snoc(Null, 3), 5), 7)) should returns true, but all_pos (Snoc(Null, -1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.
6. Give a polymorphic type derivation for $\} \mid-$ let $i d=$ fun $x->x$ in id id true : bool
7. Write the clause for gather_exp_ty_substitution for a function expression implementing the rule:

$$
\frac{\left[x: \tau_{1}\right]+\Gamma\left|-e: \tau_{2}\right| \sigma}{\Gamma \mid-(\text { fun } x->e): \tau \mid \underline{\text { unify }\left\{\left(\sigma(\tau), \sigma\left(\tau_{1}->\tau_{2}\right)\right)\right\} \text { o } \sigma}}
$$

Refer to MP6 for the details of the types. You should assume that all other clauses for gather_exp_ty_substitution have been provided.

