
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

2

 Logistics (Piazza Post)

3

Objectives for Today

■ Last class, we started the final part of
semantics, which is the last thing we are
covering in this class!

■ We began covering Axiomatic Semantics
specifically, via Floyd-Hoare logic

■ Today, we will continue with the while rule
■ When we are done, we will have some time

for review questions for the final

4

Objectives for Today

■ Last class, we started the final part of
semantics, which is the last thing we are
covering in this class!

■ We began covering Axiomatic Semantics
specifically, via Floyd-Hoare logic

■ Today, we will continue with the while rule
■ When we are done, we will have some time

for review questions for the final

5

 Questions before we start?

6

 Looping

7

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ Inference rule (not axiom) because we can only

draw conclusions about the loop if we know
something about its body C

■ Let’s start with:
{ ?? } C { ?? }

{ ?? } while B do C od { ?? }

{P} C {Q}

Looping

WHILE

8

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ The loop body C may never execute (if the guard

B is false), so if we want some P to hold after
the loop, it must hold before.

■ Let’s start with:
{ ?? } C { ?? }

{ ?? } while B do C od { ?? }

{P} C {Q}

Looping

WHILE

9

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ The loop body C may never execute (if the guard

B is false), so if we want some P to hold after
the loop, it must hold before.

■ So let’s try:
{ ?? } C { ?? }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

10

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ If all we know is P when we enter the while

loop, then all we know when we enter the body
C is (P and B)

■ So let’s try:
{ ?? } C { ?? }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

11

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ If all we know is P when we enter the while

loop, then all we know when we enter the body
C is (P and B)

■ So let’s try:
{ P and B } C { ?? }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

12

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ If we need to know P when we finish the while

loop, we had better know it when we finish the
loop body C

■ So let’s try:
{ P and B } C { ?? }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

13

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ If we need to know P when we finish the while

loop, we had better know it when we finish the
loop body C

■ So let’s try:
{ P and B } C { P }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

14

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ Finally, we can strengthen this rule because we

also know that when the whole loop is finished,
not B also holds

■ So let’s try:
{ P and B } C { P }

{ P } while B do C od { P }

{P} C {Q}

Looping

WHILE

15

While (WIP)

■ We need a rule to be able to make assertions about
while loops.
■ Finally, we can strengthen this rule because we

also know that when the whole loop is finished,
not B also holds

■ So let’s try:
{ P and B } C { P }

{ P } while B do C od { P and not B }

{P} C {Q}

Looping

WHILE

16

While

{ P and B } C { P }
{ P } while B do C od { P and not B }

{P} C {Q}

Looping

WHILE

17

While

{ P and B } C { P }
{ P } while B do C od { P and not B }

{P} C {Q}

Looping

WHILE

P satisfying this rule is called a loop invariant
because it must hold before and after the each
iteration of the loop. (Finding these invariants
is a major part of the proof process!)

18

While

{ P and B } C { P }
{ P } while B do C od { P and not B }

{P} C {Q}

Looping

WHILE

P satisfying this rule is called a loop invariant
because it must hold before and after the each
iteration of the loop. (Finding these invariants
is a major part of the proof process!)

19

While

{ P and B } C { P }
{ P } while B do C od { P and not B }

{P} C {Q}

Looping

WHILE

P satisfying this rule is called a loop invariant
because it must hold before and after the each
iteration of the loop. (Finding these invariants
is a major part of the proof process!)

So of course it’s undecidable in general to find
P for an arbitrary program and specification …

20

■ We can still find loop invariants for specific
programs, but doing this often involves
program-specific reasoning and intuition

■ Typically one of the hardest parts of writing
proofs about programs this way

■ In addition, the while rule typically needs to be
used together with precondition strengthening
and postcondition weakening

While IRL

Looping

21

■ We can still find loop invariants for specific
programs, but doing this often involves
program-specific reasoning and intuition

■ Typically one of the hardest parts of writing
proofs about programs this way

■ In addition, the while rule typically needs to be
used together with precondition strengthening
and postcondition weakening

While IRL

Looping

22

 Questions so far?

Looping

23

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Looping

24

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

We need to find a condition P that is true both before
and after the loop is executed, and such that:

(P and not x > 0) → (fact = a!)

Looping

25

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

We need to find a condition P that is true both before
and after the loop is executed, and such that:

(P and not x > 0) → (fact = a!)

Looping

26

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

First attempt: { a! = fact * (x!) }
Motivation: Want to compute a!, have computed fact,

which is the sequential product of a down through
(x + 1). What remains is to compute x!

Looping

27

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

First attempt: { a! = fact * (x!) }
Motivation: Want to compute a!, have computed fact,

which is the sequential product of a down through
(x + 1). What remains is to compute x!

Looping

28

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Need: (a! = fact * (x!) and not x > 0) → (fact = a!)
Motivation: Weakening

Looping

29

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Need: (a! = fact * (x!) and not x > 0) → (fact = a!)
Motivation: Weakening
Problem 1: What if x < 0?

Looping

30

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Need: (a! = fact * (x!) and not x > 0) → (fact = a!)
Motivation: Weakening
Problem 1: What if x < 0? Impossible, but our loop

invariant doesn’t tell us that, so we can’t show the
implication. Looping

31

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Need: (a! = fact * (x!) and not x > 0) → (fact = a!)
Motivation: Weakening
Problem 2: We need that x = 0 when loop is done.

Looping

32

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Second attempt: { a! = fact * (x!) and x >=0 }
Motivation: Same as before, but add x >= 0

Looping

33

Example

We want to show that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Need:
(a! = fact * (x!) and x >=0 and not x > 0) →
(fact = a!)

Motivation: Weakening

Looping

34

Example

 ??
(a! = fact * (x!) and x >=0 and not x > 0) →
(fact = a!)

Looping

Pure logic fragment

35

Example

 (x >= 0 and not (x > 0)) → x = 0, so
 fact * (x!) = fact * (0!) = fact
 (a! = fact * (x!) and x >=0 and not x > 0) →
 (fact = a!)

Looping

Pure logic fragment

36

Example

 (x >= 0 and not (x > 0)) → x = 0, so
 fact * (x!) = fact * (0!) = fact
 (a! = fact * (x!) and x >=0 and not x > 0) →
 (fact = a!)

Looping

Pure logic fragment

 (x >= 0 and not (x > 0)) → x = 0
 fact * (x!) = fact * (0!) = fact
 rewrite to (a! = fact) → (fact = !a)

37

Example

 (x >= 0 and not (x > 0)) → x = 0, so
 fact * (x!) = fact * (0!) = fact
 (a! = fact * (x!) and x >=0 and not x > 0) →
 (fact = a!)

Looping

Pure logic fragment

 (x >= 0 and not (x > 0)) → x = 0
 fact * (x!) = fact * (0!) = fact
 rewrite to (a! = fact) → (fact = !a)

38

Example

 (x >= 0 and not (x > 0)) → x = 0, so
 fact * (x!) = fact * (0!) = fact
 (a! = fact * (x!) and x >=0 and not x > 0) →
 (fact = a!)

Looping

Pure logic fragment

 (x >= 0 and not (x > 0)) → x = 0
 fact * (x!) = fact * (0!) = fact
 rewrite to (a! = fact) → (fact = !a)

39

Example

 ??

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

By weakening, remains to show:

40

Example

{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

Sequence rule applies

41

Example

 ??
{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

??
Sequence rule applies

42

Example

{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

??
Move to new slide

43

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

??

Move to this slide

44

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

 ??

 {a! = 1 * (x!) and x >= 0}
 fact := 1
{a! = fact * (x!) and x >= 0}

ASSIGN

Assignment rule gets us this
from a different precondition

45

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

 ??

 {a! = 1 * (x!) and x >= 0}
 fact := 1
{a! = fact * (x!) and x >= 0}

ASSIGN

So we need to get from this
precondition to the one we want

46

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

(x >= 0 and
 x = a) →
(a! = 1 * (x!)
 and x >= 0)

 {a! = 1 * (x!) and x >= 0}
 fact := 1
{a! = fact * (x!) and x >= 0}

ASSIGN

STR

We can do this by strengthening

47

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

(x >= 0 and
 x = a) →
(a! = 1 * (x!)
 and x >= 0)

 {a! = 1 * (x!) and x >= 0}
 fact := 1
{a! = fact * (x!) and x >= 0}

ASSIGN

STR

x = a → x! = a!

And this in the pure logic fragment

48

Example

Looping

 {x >= 0 and x = a}
 fact := 1
 {a! = fact * (x!) and x >= 0}

(x >= 0 and
 x = a) →
(a! = 1 * (x!)
 and x >= 0)

 {a! = 1 * (x!) and x >= 0}
 fact := 1
{a! = fact * (x!) and x >= 0}

ASSIGN

STR

x = a → x! = a!

49

Example

{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

??

This means our loop invariant is strong
enough. But is it actually a loop invariant?

50

Example

{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

Move to new slide

51

Example

Looping

{a! = fact * (x!) and x >=0}
while x > 0 do (fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >= 0 and not (x > 0)}

Move to this slide

52

Example

Looping

This is a while loop

WHILE

{a! = fact * (x!) and x >= 0 and x > 0}
(fact = fact * x; x := x – 1)

{a! = fact * (x!) and x >= 0}
{a! = fact * (x!) and x >=0}

while x > 0 do (fact := fact * x; x := x –1) od
{a! = fact * (x!) and x >= 0 and not (x > 0)}

53

Example

Looping

You show later: assignment,
sequencing, strengthening …

WHILE

{a! = fact * (x!) and x >= 0 and x > 0}
(fact = fact * x; x := x – 1)

{a! = fact * (x!) and x >= 0}
{a! = fact * (x!) and x >=0}

while x > 0 do (fact := fact * x; x := x –1) od
{a! = fact * (x!) and x >= 0 and not (x > 0)}

??

54

Example

{x >= 0 and x = a}
fact := 1
{a! = fact * (x!)
 and x >= 0}

Looping

 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {a! = fact * (x!) and x >=0 and not x > 0}

SEQ

{a! = fact * (x!) and x >=0}
 while x > 0 do
 (fact := fact * x; x := x –1)

od
 {a! = fact * (x!)

and x >= 0
and not (x > 0)}

By this and the first
weakening we did

55

Example

We get that:
 {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x –1) od
 {fact = a!}

Looping

56

 Questions?

57

 Final Review: Ask Away

The End

58

■ Great job!!!
■ WA11 due Tomorrow
■ Final is December 12th, 8:00 AM - 11:00 AM
■ All deadlines can be found on course website
■ Use office hours and class forums for help

