+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

! Logistics (Piazza Post)

* Objectives for Today

m Last class, we started the final part of
semantics, which is the last thing we are

covering in this class!

m We began covering Axiomatic Semantics
specifically, via Floyd-Hoare logic

ﬁ Objectives for Today

Last class, we started the final part of
semantics, which is the last thing we are
covering in this class!

We began covering Axiomatic Semantics
specifically, via Floyd-Hoare logic

Today, we will continue with the while rule

When we are done, we will have some time
for review questions for the final

! Questions before we start?

! Looping

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m Inference rule (not axiom) because we can only
draw conclusions about the loop if we know
something about its body C

m Let's start with:
{?22}C{??}
{?? }while B do Cod{ ?? }

WHILE

Looping

7

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m The loop body C may never execute (if the guard
B is false), so if we want some P to hold after
the loop, it must hold before.

m Let's start with:
{?22}C{??}
{?? }while B do Cod{ ??}

WHILE

Looping

8

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m The loop body C may never execute (if the guard
B is false), so if we want some P to hold after
the loop, it must hold before.

m SO let’s try:

{?22}C{??}
{P }while B do Cod{P}

WHILE

Looping

9

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m If all we know is P when we enter the while
loop, then all we know when we enter the body
Cis (P and B)

m SO let’s try:

{?22}C{??)}
{P }while B do Cod{P}

WHILE

Looping

10

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m If all we know is P when we enter the while
loop, then all we know when we enter the body
Cis (P and B)

m So let’s try:
{Pand B }C{??}
{P }while B do Cod{P}

WHILE

Looping

11

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m If we need to know P when we finish the while
loop, we had better know it when we finish the
loop body C

m So let’s try:
{Pand B }C{??}
{P }while B do Cod{P}

WHILE

Looping

12

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m If we need to know P when we finish the while
loop, we had better know it when we finish the
loop body C

m SO let’s try:
{Pand B }C{P}
{P }while B do Cod{P}

WHILE

Looping

13

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m Finally, we can strengthen this rule because we
also know that when the whole loop is finished,

not B also holds
m SO let’s try:

{PandB }C{P} —
{P }while B do Cod{P}

Looping

14

* While (WIP) o)

m We need a rule to be able to make assertions about
while loops.

m Finally, we can strengthen this rule because we
also know that when the whole loop is finished,

not B also holds
m SO let’s try:

{PandB}C{P} -
{ P }while B do Cod{ PandnotB }

Looping

15

* While
| {P} c {Q} |

{PandB }C{P} -
{P }while B do Cod{PandnotB }

Looping

16

* While
| {P} c {Q} |
-

\
P satisfying this rule is called a loop invariant

because it must hold before and after the each
iteration of the loop.

_ J

{PandB }C{ P} -
{P }while B do Cod{PandnotB }

Looping

17

* While
| {P} c {Q} |
-

\
P satisfying this rule is called a loop invariant

because it must hold before and after the each
iteration of the loop. (Finding these invariants
\is a major part of the proof process!) Yy

{PandB }C{ P} -
{P }while B do Cod{PandnotB }

Looping

18

* While
| {P} c {Q} |
-

P satisfying this rule is called a loop invariant
because it must hold before and after the each
iteration of the loop. (Finding these invariants

{PandB }C{ P} -
{P }while B do Cod{PandnotB }

~

\is a major part of the proof process!) Yy

p
So of course it's undecidable in general to find
P for an arbitrary program and specification ...

\

J

Looping

19

* While IRL

m We can still find loop invariants for specific
programs, but doing this often involves
program-specific reasoning and intuition

m Typically one of the hardest parts of writing
proofs about programs this way

Looping

20

* While IRL

m We can still find loop invariants for specific
programs, but doing this often involves
program-specific reasoning and intuition

m Typically one of the hardest parts of writing
proofs about programs this way

m In addition, the while rule typically needs to be
used together with precondition strengthening
and postcondition weakening

Looping

21

! Questions so far?

Looping .,

* Example

We want to show that:
{x >= 0and x = a}
fact :=1;
while x > 0 do (fact := fact * x; X := x—1) od
{fact = al}

Looping

23

* Example

We want to show that:
{x >= 0and x = a}
fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = al}

We need to find a condition P that is true both before
and after the loop is executed, and such that:

(P and not x > 0) — (fact = a!)

Looping

24

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = a!}

We need to find a condition P that is true both before
and after the loop is executed, and such that:

(P and not x > 0) — (fact = a!)

Looping

25

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; X := x—1) od
{fact = a!}

First attempt: { a! = fact * (x!) }

Looping

26

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = a!}

First attempt: { a! = fact * (x!) }
Motivation: Want to compute a!, have computed fact,
which is the sequential product of a down through

(x + 1). What remains is to compute x!
Looping

27

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; X := x—1) od
{fact = a!}

Need: (a! = fact * (x!) and not x > 0) — (fact = a!)
Motivation: Weakening

Looping

28

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; X := x—1) od
{fact = a!}

Need: (a! = fact * (x!) and not x > 0) — (fact = a!)
Motivation: Weakening
Problem 1: What if x < 0?

Looping

29

* Example

We want to show that:
{x >= 0and x = a}
fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = a!}

Need: (a! = fact * (x!) and not x > 0) — (fact = a!)
Motivation: Weakening

Problem 1: What if x < 0? Impossible, but our loop
invariant doesn’t tell us that, so we can’t show the
implication. .

Looping

30

* Example

We want to show that:
{x >= 0and x = a}
fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = a!}

Need: (a! = fact * (x!) and not x > 0) — (fact = a!)
Motivation: Weakening
Problem 2: We need that x = 0 when loop is done.

Looping

31

* Example

We want to show that:
{Xx>=0and x = a}
fact :=1;
while x > 0 do (fact := fact * x; X := x—1) od
{fact = a!}

Second attempt: { a! = fact * (x!) and x >=0 }
Motivation: Same as before, butadd x >= 0

Looping

32

* Example

We want to show that:
{x >= 0and x = a}

fact :=1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = a!}

Need:

(a! = fact * (x!) and x >=0 and not x > 0) —
(fact = a!)

Motivation: Weakening

Looping

33

* Example

[Pure logic fragment]

29

(a! = fact * (x!) and x >=0 and not x > 0) —
(fact = a!)

Looping

34

* Example

[Pure logic fragment]

(a! =fact * (x!)and x >=0and notx > 0) —
(fact = al)

Looping

35

* Example

[Pure logic fragment]

(x>=0andnot(x>0)) > x=0

(a! =fact * (x!)and x >=0and notx > 0) —
(fact = al)

Looping

36

* Example

[Pure logic fragment]

(x>=0andnot(x>0)) > x=0
fact * (x!) = fact * (0!) = fact

(a! =fact * (x!)and x >=0and notx > 0) —
(fact = al)

Looping

37

* Example

[Pure logic fragment]

(x>=0andnot(x>0)) > x=0
fact * (x!) = fact * (0!) = fact
rewrite to (a! = fact) — (fact = 13a)

(a! =fact * (x!)and x >=0and notx > 0) —
(fact = al)

Looping

38

* Example

[By weakening, remains to show:]

?27?

{x >=0and x = a}

fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

39

* Example

[Sequence rule applies] {a! = fact * (X!) and Xx >=0}
while x > 0 do
(fact := fact * x; x :=x-1)

{x >=0and x = a}

| od
fact := 1 {a! = fact * (x!)
{a! = fact * (x!) and x >= 0
and x >= 0} and not (x > 0)} stq
{Xx >=0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

40

* Example
PaP

[Sequence rule applies] {a! = fact * (X') and Xx >=0}

2? while x > 0 do
{x >=0and x = a} oéfaCt:zfaCt*X;X:zx_l)
fact := 1 {a! = fact * (x!)
{al = fact * (x!) and x >= 0
and x >= 0} and not (x > 0)} .
{x >=0and x = a}
fact := 1,

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

41

* Example
PaP

* - £

~ [Move tonew slide | 21" —"ract * (x1) and x >=0)
DN while x > 0 do
(x>=0andx = a} Oéfact:=fact*x;x:=x—1)
fact := 1 {a! = fact * (x!)
{a! = fact * (X!) and x>=0
and x >= 0} and not (x > 0)} stq

{x >=0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

42

* Example

[Move to this slide]

?? 4
{x >=0and x = a}

fact:=1
{a! = fact * (x!) and x >= 0}

Looping

43

* Example

[Assignment rule gets us this]

from a different precondition

ASSIGN

{a! =1* (x!)and x >= 0})/
fact :=1 K
?2? {al = fact * (x!) and x >= 0}y
{x >=0and x = a}
fact ;=1

{a! = fact * (x!) and x >= 0}
Looping

44

* Example

[So we need to get from this]

precondition to the one we want

ASSIGN

{al = 1 * (x!) and x >= 0} !

fact := 1 K
2? {al =fact * (x!)and x >= 0}
{x>=0and x =a}
fact :=1

{a! = fact * (x!) and x >= 0}

Looping

45

* Example

[We can do this by strengthening]

(x >= 0 and ASSIGN /
X =a)— {al =1 * (x!) and x >= 0})/
(al =1* (x1) fact := 1 K

and x >= 0) {a! = fact * (x!) and x >= 0} y
{x>=0and x = a}

fact :=1
{al = fact * (x!) and x >= 0}

STR

Looping

46

* Example

[And this in the pure logic fragment]

X =a— X!l =al

(x >= 0 and ASSIGN /
X =a)— {al =1 * (x!) and x >= 0})/
(al =1* (x1) fact := 1 K

and x >= 0) {a! = fact * (x!) and x >= 0} y
{x>=0and x = a}

fact :=1
{al = fact * (x!) and x >= 0}

STR

Looping

47

* Example

X =a— X!l =al

(x >= 0 and ASSIGN /
X =a)— {al =1 * (x!) and x >= 0})/
(al =1* (x1) fact := 1 K

and x >= 0) {a! = fact * (x!) and x >= 0} y
{x>=0and x = a}

fact :=1
{al = fact * (x!) and x >= 0}

STR

Looping

48

This means our loop invariant is strong
* Example [enough. But is it actually a loop invariant?]

2?
* _ —
.o {a! = fact * (x!) and x >=0}
DN while x > 0 do
(x>=0andx = a} (fact :=fact * x; x := x—-1)
. od
fact := 1 {a! = fact * (x!)
{a! = fact * (X!) and x>=0
and x >= 0} and not (x > 0)} o
{x >=0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

49

-
-

* Example [Move to new slide] ’,f’?

- -

~

TN {a! = fact * (x!) and x >=0}

DN while x > 0 do

(x>=0andx = a} (fact :=fact * x; x := x—-1)
. od

fact := 1 {al = fact * (x!)

{a! = fact * (X!) and x>=0

and x >= 0} and not (x > 0)} =
{x >=0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

50

Example

\
\ -
\ [Move to this slide]

|
|
|
|
|
|
\
|
|
\
A\l

{a! = fact * (x!) and x >=0}
while x > 0 do (fact := fact * x; x := x—-1) od
{a! = fact * (x!) and x >= 0 and not (x > 0)}

Looping

51

Example

|
\
| This is a while loop |

(fact =fact * x; x :i=x—1)
{a! = fact * (x!) and x >= 0}
{a! = fact * (x!) and x >=0}
while x > 0 do (fact := fact * x; x := x—-1) od
{a! = fact * (x!) and x >= 0 and not (x > 0)}

Looping

|
\
\
|
\
\
\ {a! = fact * (x!) and x >= 0 and x > 0}
‘\
\l

WHILE

52

* Example

“ You show later: assignment,
\ sequencing, strengthening ...

??
{a! = fact * (x!) and x >= 0 and x > 0}
(fact =fact * x; x :i=x—1)
{a! = fact * (x!) and x >= 0}
{a! = fact * (x!) and x >=0}

while x > 0 do (fact := fact * x; x := x—-1) od
{a! = fact * (x!) and x >= 0 and not (x > 0)}

Looping

|
|
|
|
|
\
|
|
\
A\l

WHILE

53

-
-

By this and the first
* Example [weakening we did] - 7

-

~

TN {a! = fact * (x!) and x >=0}

DN while x > 0 do

(x>=0andx = a} (fact :=fact * x; x := x—-1)
. od

fact := 1 {al = fact * (x!)

{a! = fact * (X!) and x>=0

and x >= 0} and not (x > 0)} =
{x >=0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; x := x—1) od
{a! = fact * (x!) and x >=0 and not x > 0}

Looping

54

* Example

We get that:
{x >= 0and x = a}
fact :=1;

while x > 0 do (fact := fact * x; X := x—1) od
{fact = a!}

Looping

55

{ Questions?

56

! Final Review: Ask Away

57

ﬁ The End

Great job!!!

WA11l due Tomorrow

Final is December 12th, 8:00 AM - 11:00 AM
All deadlines can be found on course website
Use office hours and class forums for help

58

