

Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Sign up for makeups!!!

Questions before we start?

Objectives for Today

- We are starting the final part of semantics, which is the last thing we are covering in this class!
- We will cover Axiomatic Semantics specifically
- Needed for WA11, final
- Useful IRL (and shows up on PL/FM quals)

- Commonly Floyd-Hoare Logic
 - In practice, often extended
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Questions before we start?

- Used to formally prove property (post-condition)
 of values of program variables (state) after the
 execution of program, assuming another property
 (pre-condition) of the state holds before execution
- Goal: Derive statements of form

- P, Q logical statements about state
- P precondition, Q postcondition, C program state
- **Example:** $\{x = 1\} \ x := x + 1 \ \{x = 2\}$

- Used to formally prove property (post-condition)
 of values of program variables (state) after the
 execution of program, assuming another property
 (pre-condition) of the state holds before execution
- Goal: Derive statements of form

- P, Q logical statements about state
- P precondition, Q postcondition, C program state
- **Example:** $\{x = 1\} \ x := x + 1 \ \{x = 2\}$

- Used to formally prove property (post-condition)
 of values of program variables (state) after the
 execution of program, assuming another property
 (pre-condition) of the state holds before execution
- Goal: Derive statements of form

- P, Q logical statements about state
- P precondition, Q postcondition, C program state
- **Example**: $\{x = 1\} \ x := x + 1 \ \{x = 2\}$

Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

where C is a statement of that type

Compose axioms and inference rules to build proofs for complex programs

Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

where C is a statement of that type

Compose axioms and inference rules to build proofs for complex programs

- An expression {P} C {Q} is a partial correctness statement
- For total correctness must also prove that C terminates (i.e. doesn't run forever)
 - Written: [P] C [Q]
- Will only consider partial correctness here

Language

We will give rules for **simple imperative language**:

```
<command> ::=
| <variable> := <term>
| <command>; ... ;<command>
| if <statement> then <command> else <command>
| while <statement> do <command> od
```

(Could add more features, like for-loops.)

Substitution

- Notation: P[e / v] (sometimes P[v <- e])</p>
- Meaning: Replace every v in P by e
- **Example:** (x + 2) [y 1 / x] = ((y 1) + 2)

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

Examples:

$$\{??\} x := y \{x = 2\}$$

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

Examples:

ASSIGN
$$\{?? = 2\} \times := y \{x = 2\}$$

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

Examples:

$$y = 2$$
 x := y {x = 2}

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

Examples:

 $\{y = 2\} x := y \{x = 2\}$

$${y = 2} x := 2 {x = 2}$$

True, but not by this rule

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

Examples:

 ${y = 2} x := y {x = 2}$

 $\{2 = 2\} x := 2 \{x = 2\}$

True by this rule

ASSIGN

ASSIGN

{P} C {Q}

ASSIGN

$$\{P [e/x]\} x := e \{P\}$$

Examples:

 $\{??\} x := x + 1 \{x = n + 1\}$

Backwards Reasoning

{P} C {Q}

ASSIGN

$$\{P [e/x]\} x := e \{P\}$$

Examples:

 $\{??\} x := x + 1 \{x = n + 1\}$

{P} C {Q}

ASSIGN

$$\{P [e/x]\} x := e \{P\}$$

Examples:

 $\{(\mathbf{x} = \mathbf{n} + 1)[(\mathbf{x} + 1)/\mathbf{x}]\} \mathbf{x} := \mathbf{x} + 1 \{\mathbf{x} = \mathbf{n} + 1\}$

{P} C {Q}

ASSIGN

$$\{P [e/x]\} x := e \{P\}$$

Examples:

$$\{x + 1 = n + 1\} x := x + 1 \{x = n + 1\}$$

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

What is the weakest precondition of

$$x := x + y \{x + y = w - x\}$$
?

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

ASSIGN

$$\{??\} x := x + y \{x + y = w - x\}$$

{P} C {Q}

$${P [e/x]} x := e {P}$$

ASSIGN

$$\{??\} x := x + y \{x + y = w - x\}$$

What is P?

{P} C {Q}

$${P [e/x]} x := e {P}$$

$$\{(x + y = w - x)[??/??]\} x := x + y \{x + y = w - x\}$$

That is P

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

$$\{(x + y = w - x) [??/??]\} x := x + y \{x + y = w - x\}$$

What is e?

{P} C {Q}

$$\{P [e/x]\} x := e \{P\}$$

$$\{(x + y = w - x)[(x + y)/??]\}x := x + y \{x + y = w - x\}$$

That is e

{P} C {Q}

$$\frac{\mathsf{ASSIGN}}{\mathsf{\{P [e/x]\} x := e \{P\}}}$$

$$\{(x + y = w - x)[(x + y)/??]\}x := x + y \{x + y = w - x\}$$

What is x?

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

$$\{(x + y = w - x)[(x + y)/x]\}x := x + y\{x + y = w - x\}$$

That is x

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

$$\{(x + y = w - x)[(x + y)/x]\}x := x + y\{x + y = w - x\}$$

Substitute

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

$$\{(x + y) + y = w - (x + y)\}x := x + y\{x + y = w - x\}$$

Substituted

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

$$\{(x + y) + y = w - (x + y)\} x := x + y \{x + y = w - x\}$$
Done

{P} C {Q}

$$\frac{ASSIGN}{\{P [e/x]\} x := e \{P\}}$$

$$\{(x + y) + y = w - (x + y)\}x := x + y\{x + y = w - x\}$$

Questions so far?

Strengthening

$$\begin{array}{cc} P \rightarrow P' & \{P'\} C \{Q\} \\ \hline \{P\} C \{Q\} \end{array}$$

- Meaning: If we can show that P implies P' (P→P') and we can show that {P'} C {Q}, then we know that {P} C {Q}
- \blacksquare P is **stronger** than P' means $P \rightarrow P'$

$$P \rightarrow P' \quad \{P'\} C \{Q\}$$
 $\{P\} C \{Q\}$

- Meaning: If we can show that P implies P' (P→P') and we can show that {P'} C {Q}, then we know that {P} C {Q}
- \blacksquare P is **stronger** than P' means $P \rightarrow P'$

- Meaning: If we can show that P implies P' (P→P') and we can show that {P'} C {Q}, then we know that {P} C {Q}
- \blacksquare P is **stronger** than P' means $P \rightarrow P'$

$$P \rightarrow P' \quad \{P'\} \subset \{Q\}$$
 $\{P\} \subset \{Q\}$

- Meaning: If we can show that P implies P' (P→P') and we can show that {P'} C {Q}, then we know that {P} C {Q}
- \blacksquare P is **stronger** than P' means $P \rightarrow P'$

$$P \rightarrow P' \quad \{P'\} C \{Q\}$$
 $\{P\} C \{Q\}$

- Meaning: If we can show that P implies P' (P→P') and we can show that {P'} C {Q}, then we know that {P} C {Q}
- \blacksquare P is **stronger** than P' means $P \rightarrow P'$

$$\begin{array}{c} \mathbf{P} \rightarrow \mathbf{P'} & \{\mathbf{P'}\} \subset \{Q\} \\ \hline \{\mathbf{P}\} \subset \{Q\} \end{array}$$

{P} C {Q}

$$\begin{array}{c} \mathbf{P} \rightarrow \mathbf{P'} & \{\mathbf{P'}\} \subset \{Q\} \\ \hline \{\mathbf{P}\} \subset \{Q\} \end{array}$$

$$x = 3 \rightarrow x < 7$$
 $\{x < 7\} \ x := x + 3 \ \{x < 10\}_{STR}$ $\{x = 3\} \ x := x + 3 \ \{x < 10\}$

{P} C {Q}

$$\begin{array}{ccc} \mathbf{P} \rightarrow \mathbf{P'} & \{\mathbf{P'}\} \subset \{Q\} \\ \hline \{\mathbf{P}\} \subset \{Q\} \end{array}$$

$$x = 3 \rightarrow x < 7$$
 $\{x < 7\} \ x := x + 3 \ \{x < 10\}_{STR}$ $\{x = 3\} \ x := x + 3 \ \{x < 10\}$

{P} C {Q}

$$\begin{array}{c} \mathbf{P} \rightarrow \mathbf{P'} & \{\mathbf{P'}\} \subset \{Q\} \\ \hline \{\mathbf{P}\} \subset \{Q\} \end{array}$$

$$x = 3 \rightarrow x < 7$$
 $\{x < 7\} \times := x + 3 \{x < 10\}_{STR}$
 $\{x = 3\} \times := x + 3 \{x < 10\}$
 $True \rightarrow 2 = 2$ $\{2 = 2\} \times := 2 \{x = 2\}_{STR}$
 $\{True\} \times := 2 \{x = 2\}$

{P} C {Q}

$$\begin{array}{c} \mathbf{P} \rightarrow \mathbf{P'} & \{\mathbf{P'}\} \ C \ \{Q\} \\ \hline \{\mathbf{P}\} \ C \ \{Q\} \end{array}$$

$$x = 3 \rightarrow x < 7$$
 $\{x < 7\} \ x := x + 3 \ \{x < 10\}_{STR}$ $\{x = 3\} \ x := x + 3 \ \{x < 10\}$

True
$$\rightarrow$$
 2 = 2 {2 = 2} x := 2 {x = 2} $_{STR}$

$$x = n \rightarrow x + 1 = n + 1 \{x + 1 = n + 1\}x := x + 1\{x = n + 1\}_{STR}$$

 $\{x = n\} \ x := x + 1 \{x = n + 1\}$
Strengthening

Questions so far?

??
$$\{x > 0 \& x < 5\} x := x * x \{x < 25\}$$
_{STR} $\{x = 3\} x := x * x \{x < 25\}$

??
$$\{x = 3\} \ x := x * x \{x < 25\} \}_{STR}$$
 $\{x > 0 \& x < 5\} \ x := x * x \{x < 25\}$

??
$$\{x * x < 25\} x := x * x \{x < 25\}_{STR}$$

 $\{x > 0 \& x < 5\} x := x * x \{x < 25\}$

4

??
$$\{x > 0 \& x < 5\} x := x * x \{x < 25\}_{STR}$$

 $\{x = 3\} x := x * x \{x < 25\}$

??
$$\{x = 3\} \ x := x * x \{x < 25\}_{STR}$$

 $\{x > 0 \& x < 5\} \ x := x * x \{x < 25\}$

??
$$\{x * x < 25\} x := x * x \{x < 25\}_{STR}$$

 $\{x > 0 & x < 5\} x := x * x \{x < 25\}$

??
$$\{x > 0 \& x < 5\} x := x * x \{x < 25\}_{STR}$$
 $\{x = 3\} x := x * x \{x < 25\}$

??
$$\{x = 3\} \ x := x * x \{x < 25\}_{STR}$$

 $\{x > 0 \& x < 5\} \ x := x * x \{x < 25\}$

??
$$\{x * x < 25\} x := x * x \{x < 25\}_{STR}$$
 $\{x > 0 & x < 5\} x := x * x \{x < 25\}$

Questions so far?

$$\begin{array}{c|cccc} \{P\} & C & \{Q'\} & Q' {\rightarrow} Q & _{\text{weak}} \\ \hline & \{P\} & C & \{Q\} & \end{array}$$

$$\frac{\{P\}\ C\ \{\mathbf{Q'}\}\qquad \mathbf{Q'} \rightarrow \mathbf{Q}_{\text{WEAK}}}{\{P\}\ C\ \{\mathbf{Q}\}}$$

{P} C {Q}

$$\begin{array}{c|c}
\{P\} C \{Q'\} & Q' \rightarrow Q \\
 & \{P\} C \{Q\}
\end{array}$$

$${z = z \& z = z} x := z; y := z {x = z \& y = z}$$
 $(x = z \& y = z) \rightarrow (x = y)$
 ${z = z \& z = z} x := z; y := z {x = y}$

{P} C {Q}

$$\begin{array}{c|c}
\{P\} C \{Q'\} & Q' \rightarrow Q \\
 & \{P\} C \{Q\}
\end{array}$$

$$\{z = z \& z = z\} \times := z; y := z \{x = z \& y = z\}$$

$$(x = z \& y = z) \rightarrow (x = y)$$

$$\{z = z \& z = z\} \times := z; y := z \{x = y\}$$

{P} C {Q}

$$\frac{\{P\} C \{Q'\} \qquad Q' \rightarrow Q}{\{P\} C \{Q\}}$$

$${z = z \& z = z} x := z; y := z {x = z \& y = z}$$

$$(x = z \& y = z) \rightarrow (x = y)$$

$${z = z \& z = z} x := z; y := z {x = y}$$
weak

Questions so far?

- Logically equivalent to combination of Precondition
 Strengthening and Postcondition Weakening
- Uses $P \rightarrow P'$ and $Q' \rightarrow Q$

- Logically equivalent to combination of Precondition
 Strengthening and Postcondition Weakening
- Uses $P \rightarrow P'$ and $Q' \rightarrow Q$

- Logically equivalent to combination of Precondition
 Strengthening and Postcondition Weakening
- Uses $P \rightarrow P'$ and $Q' \rightarrow Q$
- Very useful IRL!

Questions so far?

Sequencing

$${z = z \& z = z} x := z {x = z \& z = z}$$

 ${x = z \& z = z} y := z {x = z \& y = z}$
 ${z = z \& z = z} x := z; y := z {x = z & y = z}$

$${z = z \& z = z} \times := z {x = z \& z = z}$$

 ${x = z \& z = z} \text{ y } := z {x = z \& y = z}$
 ${z = z \& z = z} \times := z; \text{ y } := z {x = z \& y = z}$

$${z = z \& z = z} x := z {x = z \& z = z}$$

 ${x = z \& z = z} y := z {x = z \& y = z}$
 ${z = z \& z = z} x := z; y := z {x = z \& y = z}$

Questions so far?

Branching

$$\{P \text{ and } B\} C_1 \{Q\} \{P \text{ and (not B)}\} C_2 \{Q\}_{m}$$

 $\{P\} \text{ if B then } C_1 \text{ else } C_2 \text{ fi } \{Q\}$


```
{P} C {Q}
```

```
{P and B} C_1 {Q} {P and (not B)} C_2 {Q} m {P} if B then C_1 else C_2 fi {Q}
```



```
{P} C {Q}
```

```
{P and B} C_1 {Q} {P and (not B)} C_2 {Q} _{m} {P} if B then C_1 else C_2 fi {Q}
```



```
\{P \text{ and } B\} C_1 \{Q\} \{P \text{ and (not B)}\} C_2 \{Q\}_{m} 
\{P\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi } \{Q\}
```

True branch

{P} C {Q}

```
\{P \text{ and B}\}\ C_1^{\{Q\}} \ \{P \text{ and (not B)}\}\ C_2^{\{Q\}}_{\pi}
\{P\} \text{ if B then } C_1^{\{Q\}} \text{ else } C_2^{\{Q\}} \text{ fi } \{Q\}
```

False branch

```
\{P \text{ and B}\}\ C_1^{\{Q\}} \{P \text{ and (not B)}\}\ C_2^{\{Q\}}_{m}
\{P\} \text{ if B then } C_1 \text{ else } C_2^{\{Q\}}
```

```
\{\mathbf{P} \text{ and B}\}\ C_1^{\{\mathbf{Q}\}}\ \{\mathbf{P} \text{ and (not B)}\}\ C_2^{\{\mathbf{Q}\}}_{\pi}
\{\mathbf{P}\}\ \text{if B then } C_1^{\{\mathbf{Q}\}} \text{ else } C_2^{\{\mathbf{Q}\}}
```

```
\{\mathbf{P} \text{ and B}\}\ C_1^{\{\mathbf{Q}\}}\ \{\mathbf{P} \text{ and (not B)}\}\ C_2^{\{\mathbf{Q}\}}_{\pi}
\{\mathbf{P}\}\ \text{if B then } C_1^{\{\mathbf{Q}\}} \text{ else } C_2^{\{\mathbf{Q}\}}
```

```
?? \frac{??}{\{y-x=a+|x|\}}

y:=y-x

y:=y-x

y:=y-x

y:=y-x

y:=y-x

y:=y+x

y:=a\} if x < 0 then y:=y-x else y:=y+x fi y=a+|x|
```

Pure math and logic fragment

```
\begin{array}{c} x < 0 \\ \rightarrow |x| = -x \\ \hline (y = a \& x < 0) \quad y := y - x \\ \rightarrow y - x = a + |x| \quad \{y = a + |x|\}_{\text{STR}} \\ \hline \{y = a \& x < 0\} \quad \{y = a \& \text{not } (x < 0)\} \\ y := y - x \quad y := y + x \\ \{y = a + |x|\} \quad \{y = a + |x|\} \end{array}
\{y = a\} \text{ if } x < 0 \text{ then } y := y - x \text{ else } y := y + x \text{ fi } \{y = a + |x|\} \end{array}
```

ASSIGN

```
not (x < 0) \rightarrow |x| = x   \{y + x = a + |x|\}
                         (y = a \& not (x < 0))
                                                            y := y + x
                                                       \cdot \{y = a + |x|\} 
                         \rightarrow (y + x = a + |x|)
       x < 0
                                        ASSIGN
   \rightarrow |x| = -x  {y - x = a + |x|}
   (y = a \& x < 0) y := y - x
\rightarrow y - x = a + |x| \{y = a + |x|\}_{STR}
                                                                              STR
                                               {y = a \& not (x < 0)}
          \{y = a \& x < 0\}
                                                    y := y + x
             y := y - x
                                                   {y = a + |x|}
           {y = a + |x|}
\{y = a\} \text{ if } x < 0 \text{ then } y := y - x \text{ else } y := y + x \text{ fi } \{y = a + |x|\}
```


Next Class: Looping

Next Class: Time for Review, Too

ICES: Course Evaluation!

(Please be kind and constructive. Please also consider gender biases.)

https://ices.citl.illinois.edu/

- LAST CLASS
- Please bring questions for review
- Great job!!!
- MP11 due Tuesday
- WA11 due Wednesday
- All deadlines can be found on course website
- Use office hours and class forums for help