+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha


https://courses.grainger.illinois.edu/cs421/fa2023/

* Lambda Calculus - Motivation

A beautiful, simple, Turing-complete
programming language

Captures the essence of functions, function
application, and evaluation

Serves as a theory of computation
Extremely elegant and useful for reasoning



* Lambda Calculus - Motivation

A beautiful, simple, Turing-complete
programming language

Captures the essence of functions, function
application, and evaluation

Serves as a theory of computation
Extremely elegant and useful for reasoning
Two kinds: untyped and typed



! Questions before we start?



! Untyped Lambda Calculus



* Untyped A-Calculus is All You Need

m All you need:
m Variables: x, vy, z, w, ...
m Abstraction: L x.e
(Function creation, think fun x -> e)
= Application: €, ¢,
= Grouping: (e)

Untyped Lambda Calculus



* Untyped A-Calculus is All You Need

m All you need:
m Variables: x, vy, z, w, ...
m Abstraction: L x.e
(Function creation, think fun x -> e)
= Application: €, ¢,
= Grouping: (e)

m With some environment, and some canonical
values, this is Turing-Complete!

Untyped Lambda Calculus



* Untyped A-Calculus Grammar

Formal BNF Grammar:

<expression> ::=
<variable>

<abstraction>
<application>
(<expression>)

Untyped Lambda Calculus



* Untyped A-Calculus Grammar

Formal BNF Grammar:

<expression> ::=
<variable>

<abstraction>
<application>
(<expression>)

<abstraction> ::= A<variable>.<expression>

Untyped Lambda Calculus



* Untyped A-Calculus Grammar

Formal BNF Grammar:

<expression> ::=
<variable>
<abstraction>
<application>
(<expression>)

<abstraction> ::= A<variable>.<expression>

<application> ::= <expression> <expression>
Untyped Lambda Calculus



* Untyped A-Calculus Terminology

m Variable binding: 1 x . e is a binding of x in e

Untyped Lambda Calculus



* Untyped A-Calculus Terminology

m Variable binding: L x . e is a binding of x in e
m Occurrence: a location of a subterm in a term

m Bound occurrence: occurrences of xin A x . e
m Free occurrence: one that is not bound

Untyped Lambda Calculus



* Untyped A-Calculus Terminology

m Variable binding: L x . e is a binding of x in e
m Occurrence: a location of a subterm in a term

m Bound occurrence: occurrences of xin A x . e
m Free occurrence: one that is not bound

m Scope of binding: in ) x. e, all occurrences in e
not in a subterm of the form A x. €’ (same x)

Untyped Lambda Calculus



* Untyped A-Calculus Terminology

m Variable binding: L x . e is a binding of x in e
m Occurrence: a location of a subterm in a term

m Bound occurrence: occurrences of xin A x . e
m Free occurrence: one that is not bound

m Scope of binding: in ) x. e, all occurrences in e
not in a subterm of the form A x. €’ (same x)

m Free variables: all variables having free
occurrences in a term

Untyped Lambda Calculus



* Example

m Label occurrences and scope:

(AX.YAY. Y (AX. XY) X)X

Untyped Lambda Calculus



* Example

m Label occurrences and scope:

(AX.YAY. Y (AX. XY) X)X
12 34 56789

Untyped Lambda Calculus 1



* Example

m Label occurrences and scope:

(AX.YLY.Y(AX. XY) X)X
12 34 567809

Untyped Lambda Calculus 1



* Example

m Label occurrences and scope:

free

|
(AX.YLY.Y(AX. XY) X)X
12 34 567809

Untyped Lambda Calculus 1



* Example

m Label occurrences and scope:

free

|
(AX.YAV.V(AX.XV) X)X
12 34 567809

Untyped Lambda Calculus 1



* Example

m Label occurrences and scope:

free

|
(AX.YAV.V(AX.XVY) X)X
12 34 5678 9

Untyped Lambda Calculus )



* Example

m Label occurrences and scope:

free free

| |
(AX.YAV.V(AX.XVY) X)X
12 34 5678 9

Untyped Lambda Calculus

21



! Questions so far?

22



{ Computation

23



* Some Intuition

Identity Function:

(A X. X)

Computation N



* Some Intuition

Identity Function:

(A X. X)

Applying Identity Function:
(AX. X))y =>*y

Computation .



* Untyped A-Calculus

m How do you compute with the A-calculus?

m Roughly speaking, by substitution:
(Ax.e)e, s*e [e,/X]
(modulo subtleties to deal with variables)

Computation ,



* Transition Semantics for A-Calculus

Lazy
E _E” - [ Evaluation ]
E EI N EII EI

L-App

(A X . E) E' — E[E/X]

Computation _



i Transition Semantics for A-Calculus

Eager
E _E” - [ Evaluation ]
E EI N EII EI

E’ — E" E-App

(A\X.E)E'— (Ax.E)E”

V-App

(AX . E) V — E[V/X]

Where V is a variable or abstraction (value)

Computation .



* How Powerful is the Untyped A-Calculus?

m The untyped A-calculus is Turing Complete
m Can express any sequential computation
m Yes, in that few computation rules

Computation .



* How Powerful is the Untyped A-Calculus?

m The untyped A-calculus is Turing Complete
m Can express any sequential computation
m Yes, in that few computation rules

m But it'd suck to use as-is:

m How to express basic data: booleans,
iIntegers, etc?

m How to express recursion?
m What about constants? If-then-else?

m "Just” a convenience—can be added as
syntactic sugar

Computation 0



* How Powerful is the Untyped A-Calculus?

m The untyped A-calculus is Turing Complete
m Can express any sequential computation
m Yes, in that few computation rules

m But it'd suck to use as-is:

m How to express basic data: booleans,

integers, etc? [Clever encodings]
m How to express recursion? do exist

m What about constants? If-then-else?

m Just” a convenience—can be added as
syntactic sugar

Computation N



* How Powerful is the Typed A-Calculus?

m Sometimes Not Turing Complete
m Depends on the type system!

m Types rule out invalid programs

m What is the type of (f f)?

m Types are not syntactic sugar! They
disallow some terms

Computation .



* How Powerful is the Typed A-Calculus?

m Sometimes Not Turing Complete
m Depends on the type system!

m Types rule out invalid programs

m What is the type of (f f)?

m Types are not syntactic sugar! They
disallow some terms

m e.g., simply typed A-calculus is less powerful
than the untyped A-Calculus: not Turing
Complete (no recursion)

Computation 33



! Questions so far?

34



Normalization:
! Another way to think about meaning

35



* Equality

m A problem that shows up everywhere: How
do you tell if two terms in this language are
“the same” as each other?

Normalization N



* Equality

m A problem that shows up everywhere: How
do you tell if two terms in this language are
“the same” as each other?

m Compute them all the way, then see if the
result is the same

m Want some way of normalizing the
terms—choose some normal form

B 'Same” means same normal form

Normalization .



* Equality

m A problem that shows up everywhere: How
do you tell if two terms in this language are
“the same” as each other?

m Compute them all the way, then see if the
result is the same

m Want some way of normalizing the
terms—choose some normal form

m 'Same” means same normal form
m Typically a simple, syntactic notion of equality

Normalization N



* Equality

m Programming languages researchers really
like Greek letters for some reason

m S0 when we define computation rules to get
terms into their normal forms, we name them

after Greek letters:

Normalization o



* Equality

m Programming languages researchers really
like Greek letters for some reason

m S0 when we define computation rules to get
terms into their normal forms, we name them

after Greek letters:
m o-conversion: renaming variables
m B-reduction: reducing function application

Normalization .



* Equality

m Programming languages researchers really
like Greek letters for some reason

m S0 when we define computation rules to get
terms into their normal forms, we name them

after Greek letters:
m o-conversion: renaming variables
m B-reduction: reducing function application

m Equality of lambda terms in untyped lambda
calculus is af-equivalence

Normalization "



* Equality

m Programming languages researchers really
like Greek letters for some reason

m S0 when we define computation rules to get
terms into their normal forms, we name them

after Greek letters:
= |a-conversion: renaming variables |
m B-reduction: reducing function application

m Equality of lambda terms in untyped lambda
calculus is af-equivalence

Normalization .



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Normalization .



i a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Bad:

7»x.xy>¢ AY.VY

Normalization .



i a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

y is free in body on LHS,
but not in body on RHS

xx.xy>eQ AY.VY

Bad:

Normalization N



i a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

y is free in body on LHS,
but not in body on RHS

kx.xy)«Qky.yy

Bad:

Normalization .



i a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

y is free in body on LHS,
but not in body on RHS

kx.xy)«Qky.yy

Can’t just rename x to y;
get something different

Bad:

Normalization .



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Bad:

.xx. (ky.xy)}sé LY. (LY. YY)

Normalization .



i a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Bad:
AXo (MY XY) > LY. (LY. YY)
\ ) H_/
e ely/x]

Normalization .



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes

bound in e when replaced by y
Free occurrence of x in body on LHS ]

[ becomes bound in wrong way when
Bad: replaced by y on RHS

AX. (LY. XY)>e<> 0y (LY. YY)
—— ——
e e[y/x]

Normalization

50



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes

bound in e when replaced by y
Free occurrence of x in body on LHS ]

[ becomes bound in wrong way when
Bad: replaced by y on RHS

AX. (LY. XY)>e> Ay (LY. YY)
—— ——
e e[y/x]

Normalization

51



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Good:
AX.(AY.Y)X—0—> LY. (LY. Y)Y

Normalization -



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Renaming x on LHS to y on RHS doesn’t
Good: change the meaning!

AX.(AY.Y)X—0—> LY. (LY. Y)Y

Normalization .



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Renaming x on LHS to y on RHS doesn’t
Good: change the meaning!

AX. (MY Y)X—a—>AYy. (LY. Y)Y

Normalization N



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Renaming x on LHS to y on RHS doesn’t
Good: change the meaning!

AX. (MY Y)X—a—>Ay. (AY. Y)Y

Normalization .



* a-Conversion

A X.e—a—> LY. (e [y/x]) provided that:
1. yis not free in e

2. No free occurrence of x in e becomes
bound in e when replaced by y

Renaming first y on LHS to x on RHS
Good: doesn’t change the meaning!

AY.(AY.Y)Yy—o—>AX. (LY. Y) X

Normalization .



! Questions so far?

Normalization



* a-Equivalence

= o-equivalence is the smallest congruence
containing a-conversion

Normalization .



* a-Equivalence

= o-equivalence is the smallest(congruence |
containing a-conversion

Normalization -



* a-Equivalence

= o-equivalence is the smallest(congruence |
containing a-conversion
m Let ~ be a relation on lambda terms. ~ is a

congruence if
m it is an equivalence relation, and

m ife, ~ e, then
(ee) ~(ee,)and (ee)~ (e ¢€)
AX. e ~AX e

Normalization .



* a-Equivalence

m o-equivalence is the smallest congruence
containing a-conversion

m Let ~ be a relation on lambda terms. ~ is a
congruence if

m it is an equivalence relation, and

m ife, ~ e, then
(ee) ~(ee,)and (ee)~ (e ¢€)
AX. e ~AX e

m One usually treats a-equivalent terms as equal,

l.e., uses a-equivalence classes of terms

Normalization N



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

Normalization o



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY. YX)X—0—> A z. (AY. Y 2Z)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.AY.YX)X—0—> A Z. (LY. Y 2Z)Z

Normalization N



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.AY. YyX)X—-0—>r2. (Ay.Yy2Z)Z SO
AX.(AY. Yy X)X ~va~y AZ. (LY. Y Z)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vav LZ. (LY. Y Z)Z

Normalization "



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (MY.Y 2Z)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (MY.Y 2Z)Z

(LYy.Y 2Z)—0—> (A X. X 2)

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY.Yy 2)—0—> (A X. X 2)

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. y z) varv (A X. X Z)

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az, (MY.Y Z) Z

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. X Z)

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az, (MY.Y Z) Z

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(LYy.y2)Z ~a~ (AX.XZ2)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AYy.yz)Z ~oa~ (AX.X2)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~v AZ. (LYY Z)2Z

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.yz)z~oa~ (AX.X2)Z

Normalization N



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AXcAY.yX)X=a—>AZ. (LY. YZ)Z SO
AX.(AY. Yy X)X ~vo~ AZ. (LYY Z)2Z

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
rZ.(hY.Y2Z)Z ~a~AZ. (AX.X2Z)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
rMZ.(AY.YyZ)Z~o~ hZ (AX.X2Z)Z

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AX.(AY.yX)X—0—>Az. (LY. Y Z)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
MNZ.(AY.YZ)Z ~va~v AZ. (M X. X Z) Z

Normalization 77



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AXcAY.yX)X=a—>AZ. (LY. YZ)Z SO
AX.(AY. Yy X)X ~vo~ Az (AY. Y 2Z)zZ

(AY. Y Z)—a—> (AL X. XZ) SO
(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
NZ.(AY.yZ)Z~o~v hzZ. (AX.X2Z)2Z

MZ.(AX.X2Z)Z—0—>AY.(AX.XY)Y SO
MZ. (AX.XZ)Z~oa~ AY. (AX. XY)Y

Normalization .



* Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY) Y

AXcAY.yX)X=a—>AZ. (LY. YZ)Z SO
AX. (LY. Yy X)X ~vary L Z.(MLY.Y2Z)2Z

(AY. Y Z)—a—> (AL X. XZ) SO

(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
rZ.(hY.YZ)Zr~vov ) Z. (AX.X2Z)2Z

MZ. (AX.XZ2)Z=0—>AY. (AX.XY)Y SO
rMZ.(AX.X2Z)Zvav LY. (AX.XY)Y

Normalization 79



* Example

Show: A X. (LY. Yy X) X ~var~v LY. (A X. XY)Y

AXcAY.yX)X=a—>AZ. (LY. YZ)Z SO
AX. (LY. Yy X)X ~vary L Z.(MLY.Y2Z)2Z

(AY. Y Z)—a—> (AL X. XZ) SO

(LY. Yy Z) ~a~ (A X. XZ) SO
(AY.Yy2Z)Z~a~ (AX.X2Z)ZSO
rZ.(hY.YZ)Zr~vov ) Z. (AX.X2Z)2Z

MZ. (AX.XZ2)Z=0—>AY. (AX.XY)Y SO
rMZ.(AX.X2Z)Zvav LY. (AX.XY)Y

Normalization .



! Questions so far?

Normalization



* Equality

m Programming languages researchers really
like Greek letters for some reason

m S0 when we define computation rules to get
terms into their normal forms, we name them

after Greek letters:
m o-conversion: renaming variables
= [B-reduction: reducing function application]

m Equality of lambda terms in untyped lambda
calculus is af-equivalence

Normalization .



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Normalization .



* B-reduction

(A x.e)r—p->le[r/x] |
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Normalization N



* Needed: Substitution

m Defined on a-equivalence classes of terms

m e [r/ x] means replace every free
occurrence of xine by r

m e called redex; r called residue

Normalization .



* Needed: Substitution

m Defined on a-equivalence classes of terms

m e [r/ x] means replace every free
occurrence of xine by r

m e called redex; r called residue

m Provided that no variable free in e becomes
bound in e [r/ x]

m Rename bound variables in e to avoid
capturing free variables of r

Normalization “



* Needed: Substitution

We can define by cases:

m Variable:
X[r/x]=r
vir/x]=yify#Xx

Normalization .



* Needed: Substitution

We can define by cases:

m Variable:
X[r/x]=r
vir/x]=yify#Xx

m Application:
(e;e,)[r/x]=((elr/x])(elr/x]))

Normalization .



* Needed: Substitution

We can define by cases:
m Variable:
X[r/x]=r
vir/x]=yify#Xx
m Application:
(e;e,)[r/x]=((elr/x])(elr/x]))
m Function:
(AXx.e)[r/x]=(AX. €e)
(Ay.e)[r/x]=ry.(e[r/x])ify#xand
y not free in r

Normalization .



* Needed: Substitution

We can define by cases:

m Variable:
X[r/x]=r
vir/x]=yify#Xx

m Application:
(e;e,)[r/x]=((elr/x])(elr/x]))

m Function:
(AXx.e)[r/x]=(AX. €e)
(Ay.e)[r/x]=ry.(e[r/x])ify#xand

] y not free in r

Renameyy in redex if
needed to avoid capture

Normalization o



* Needed: Substitution

Ay.yz)[(Ax.xy)/[z] =7

Normalization o



* Needed: Substitution

(Ay.yz)[(Ax.xy)/z] =7
m Problems?
m Z in redex in scope of y binding

Normalization N



* Needed: Substitution

Ay.yz)[(Ax.xy)/[z] =7

m Problems?
m Z in redex in scope of y binding
m Yy free in the residue

Normalization N



* Needed: Substitution

Ay.yz)[(Ax.xy)/z] =7

m Problems?
m Z in redex in scope of y binding
m Yy free in the residue

Renameyy in redex if
needed to avoid capture

Normalization o



* Needed: Substitution

Ay.yz)[(Ax.xy)/z] =7

m Problems?
m Z in redex in scope of y binding
m Yy free in the residue

m (AY.y2)[(AX.XY)/ Z] —0—>
(A ww2z)[(AX.XYy)/ Z]

Renameyy in redex if
needed to avoid capture

Normalization o



* Needed: Substitution

Ay.yz)[(Ax.xy)/z] =7

m Problems?
m Z in redex in scope of y binding
m Yy free in the residue

m (Ay.y2)[(AX.XY)/ Z] —a—>
(Awwz)[(AX.XYy)/z] =
AW. W (AX. XY)

[ Then we can substitute ]

Normalization o



* Needed: Substitution

m Note: only replace free occurrences

Normalization .



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(AYy.yz(Az.2) [(AX.X)/ Z] =
AY. Y (AX X)(Az 2)

Normalization N



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(Ay.yz(rAz.2) [(AhX.X)/ 2] =
AY. Y (AX X)(Az 2)

Normalization o



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(Ay.yz(rhz.2)[(AX.X)/ Z] =
AY. Y (AX X)(Az 2)

Normalization o



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(Ay.yz(rhz.2)[(AX.X)/ Z] =
LY. Y (A X x)(Az 2)

Normalization o



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(Ay.vyz(rhz. 2))[(AX.X)/ Z] =
LY.y (X X)) (Az 2)

Normalization o



* Needed: Substitution

m Note: only replace free occurrences

m e.g,

(Ay.vyz(rhz. 2))[(AX.X)/ Z] =
LY.y (X X)) (Az 2)

not
LY. Y (hX.x) (A z (A X X))

Normalization o



* B-reduction

(A x.e)r—p->le[r/x] |
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Normalization o



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:

(Az. (A x.xy)z) (LY. Yy 2Z)—p—>
??

Normalization o



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:
(Az. (A x.xy)z) (LY. Yy 2Z)—p—>
(AX.xy)(Ly.y2Z)

Normalization o



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:
(Az.(Ax.xy)z) (LY. Yy 2Z)—p—>

(Ax.xy)(LY.Y Z)—p—>
??

Normalization .



* B-reduction

(AX.e)r—p—>e[r/x]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:
(Az.(Ax.xy)z) (LY. Yy 2Z)—p—>
(Ax.xy)(LY.Y Z)—p—>
(hy.y2z)y

Normalization o5



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:
(Az.(Ax.xy)z) (LY. Yy 2Z)—p—>
(Ax.xy)(rLy.yz)—p—>

Ay.yz)y—-p—>
2?

Normalization o



* B-reduction

(AX.e)r—p—>e[r/X]
m Essence of computation in the lambda calculus
m Usually defined on a-equivalence classes of terms

Example:
(Az.(Ax.xy)z) (LY. Yy 2Z)—p—>
(Ax.xy)(LY.Y Z)—p—>
Ay.yz)y—p—>
yZ

Normalization .



! Questions so far?

Normalization |,



* a-Equivalence

m of-equivalence is the smallest
congruence containing a-equivalence and
p-reduction

m Aterm is in normal form if no subterm is
a-equivalent to a term that can be B-reduced

Normalization "



* a-Equivalence

m of-equivalence is the smallest
congruence containing a-equivalence and
p-reduction

m A term is in normal form if no subterm is
a-equivalent to a term that can be B-reduced

= Hard fact (Church-Rosser): if e, and e, are
aff-equivalent and both are normal forms, then
they are a-equivalent

Normalization "



Teaser: Does every term have a

! normal form?

114



Teaser: Does every term have a

! normal form?

Try to normalize:
(A X. X X) (A X. X X)

115



{ Questions?

116



Next Class:
Evaluation in Lambda Calculus

! (plus how to write actual programs)

117



* Next Class

Please enjoy fall break!

Last quiz is the Tuesday when you are back.
All deadlines can be found on course website
Use office hours and class forums for help

118



