+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

! Midterm Study Guide

* Objectives for Today

Three Main Topics of the Course

New
Programming
Paradigm

Language
Semantics

Language
Translation

*Objectives for Today

Three Main Topics of the Course

Language
Semantics

* Objectives for Today

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

* Objectives for Today

Order of Evaluation

Lambda

Specification to Implementation

! Questions before we start?

! Semantics

*Semantics

m Expresses the meaning of syntax
m Static semantics:

m Meaning based only on the form of the
expression without executing it

m Usually restricted to type checking / type
inference

m Dynamic semantics:
m Describes meaning of executing a program
m Kinds: operational, axiomatic, denotational

Semantics ;

* Semantics

m Expresses the meaning of syntax
m Static semantics:

m Meaning based only on the form of the
expression without executing it

m Usually restricted to type checking / type
inference

Semantics N

* Semantics

m Expresses the meaning of syntax
m Static semantics:

m Meaning based only on the form of the
expression without executing it

m Usually restricted to type checking / type
inference

m Dynamic semantics:
m Describes meaning of executing a program
m Kinds: operational, axiomatic, denotational

Semantics .

i Semantics

"m Dynamic semantics:
m Describes meaning of executing a program
m Kinds: operational, axiomatic, denotational)

Semantics .

* Dynamic Semantics

m Why so many kinds of dynamic semantics?
m Different languages better suited to different
kinds of semantics
m Different kinds serve different purposes
m Common to have multiple kinds and show how
they relate to each other

"m Dynamic semantics: A
m Describes meaning of executing a program
m Kinds: operational, axiomatic, denotational)

Semantics .

ﬁ Operational Semantics

m Whatitis:

m Describe how to execute (implement) programs
of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

m Meaning of program is how its execution
changes the state of the machine

Semantics N

ﬁ Operational Semantics

m Whatitis:

m Describe how to execute (implement) programs
of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

m Meaning of program is how its execution
changes the state of the machine

m Tradeoffs:

m Easy to implement

m Hard to reason about abstractly (without
thinking about implementation details)

Semantics N

ﬁ Axiomatic Semantics

m What itis:
m Also called a Program Logic
Commonly Floyd-Hoare logic
These days, also separation logic
m Logical system built from axioms and inference
rules
m Often written as pre-conditions and
post-conditions on programs

Semantics .

* Axiomatic Semantics

m What itis:
m Also called a Program Logic
Commonly Floyd-Hoare logic
These days, also separation logic
m Logical system built from axioms and inference
rules
m Often written as pre-conditions and
post-conditions on programs
m Tradeoffs:
m Mainly suited to imperative languages
m Good for external reasoning

Semantics -

* Axiomatic Semantics

m What itis:
m Also called a Program Logic
Commonly Floyd-Hoare logic
These days, also separation logic
m Logical system built from axioms and inference
rules
l- Often written as pre-conditions and
post-conditions on programs]
m Tradeoffs:

m Mainly suited to imperative languages
m Good for external reasoning

Semantics N

* Axiomatic Semantics

m Used to formally prove a post-condition

(property) of the state (the values of the
program variables) after the execution of
Drogram, assuming a pre-condition (another
property) holds before execution

Semantics N

* Axiomatic Semantics

m Used to formally prove a post-condition
(property) of the state (the values of the
program variables) after the execution of
Drogram, assuming a pre-condition (another
property) holds before execution
m Written :
{Precondition} Program {Postcondition}

Semantics .

* Axiomatic Semantics

m Used to formally prove a post-condition

(property) of the state (the values of the
program variables) after the execution of
Drogram, assuming a pre-condition (another
property) holds before execution
m Written :

{Precondition} Program {Postcondition}

m Source of idea of loop invariant

Semantics N

* Denotational Semantics

m What itis:
m Construct function w assigning mathematical
meaning to each program construct
via category theory, algebra, probability
theory, topology, lambda calculus, ...
m Meaning function is compositional: meaning of
construct built from meaning of parts

Semantics .

* Denotational Semantics

m What itis:
m Construct function s assigning mathematical
meaning to each program construct
via category theory, algebra, probability
theory, topology, lambda calculus, ...
m Meaning function is compositional: meaning of
construct built from meaning of parts
m Tradeoffs:
m Useful for proving properties of programs
m Doesnt help much with implementation

Semantics .

ﬁ Operational Semantics

m Whatitis:

m Describe how to execute (implement) programs
of language on a virtual machine, by describing
how to execute each program statement
(i.e., following the structure of the program)

m Meaning of program is how its execution
changes the state of the machine

m Tradeoffs:

m Easy to implement

m Hard to reason about abstractly (without
thinking about implementation details)

Semantics N

* Operational Semantics

m Can be small step or big step
= Small step: define meaning of one step of
execution of a program statement at a time
m Big step: define meaning in terms of value of
execution of whole program statement
m Common to have both and relate them

Semantics .

* Operational Semantics

m Can be small step or big step
= Small step: define meaning of one step of
execution of a program statement at a time
m Big step: define meaning in terms of value of
[execution of whole program statement]
s Common to have both and relate them

Semantics ,

! Natural (Big Step) Semantics

27

* Natural Semantics

m Also known as Structural Operational
Semantics or Big Step Semantics

m Provide value for a program by rules and
derivations, similar to type derivations

Natural Semantics .

* Natural Semantics

m Also known as Structural Operational
Semantics or Big Step Semantics

m Provide value for a program by rules and
derivations, similar to type derivations

m Rule conclusions look like:
(C,m)um’
or
(E, m) Uv

Natural Semantics .

* Simple Imperative Language Syntax

[& Identifiers
N & Numerals

Natural Semantics 0

* Simple Imperative Language Syntax

[& Identifiers
N & Numerals

B::=true|false | B& B |BorB |
notB|E<E|E=E

Natural Semantics N

* Simple Imperative Language Syntax

[& Identifiers
N & Numerals

B::=true|false | B& B |BorB |
notB|E<E|E=E

E:=N|I|E+E|E*E|E-E|-E]|(E)

Natural Semantics .

* Simple Imperative Language Syntax

I € Identifiers
N € Numerals
B::=true|false | B& B |BorB |
notB|E<E|E=E
E::=N|I|E+E|E*E|E-E|-E]| (E)
C::=skip|C;,C|I:=E|
if B then C else C fi | while B do C od

Natural Semantics 33

* Simple Imperative Language Semantics

[(E, m) U v]

Id

Look up
[identifiers] (I, m) U m(I)

Natural Semantics N

* Simple Imperative Language Semantics

[(E, m) U v]

Id

(I, m) ¥ m(I)

Numerals Num
[are literals] (N, m) UN

Natural Semantics N

* Simple Imperative Language Semantics

y [(E, m) U v]
(I, m) ¢ m(I)
(N, m) UN Num
[(B, m) 4 v]
(true, m) U truTerue (false, m) U ’r'aI:eIse

Boolean atoms
are literals too

Natural Semantics y

! Questions so far?

Natural Semantics _,

* Simple Imperative Language Semantics
[(B, m) U v]

(Bl m) U false And-F (BI m) \U' true (B,I m) U b And-T
(B & B, m) U false (B&B, m)Ub

Boolean combinators have
the standard meaning

Natural Semantics .

* Simple Imperative Language Semantics
[(B, m) U v]

(Bl m) U false And-F (BI m) \U' true (B,I m) U b And-T
(B & B, m) U false (B&B, m)Ub

(B,m)Utrue . (B,m)Uifalse (B, m)ib
(B or B, m) { true (BorB'm)db

Or-F

Boolean combinators have
the standard meaning

Natural Semantics o

* Simple Imperative Language Semantics
[(B, m) U v]

(Bl m) U false And-F (BI m) \U' true (B,I m) U b And-T
(B & B, m) U false (B&B, m)Ub

(B,m)Utrue . (B,m)Uifalse (B, m)ib

Or-F

(B or B, m) { true (BorB'm)db
(B, m) U true o (B, m) U false potr
(not B, m) U false (not B, m) U true

Boolean combinators have
the standard meaning

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(EmMiU (EEmIiV U~V=Db _,
(E~E'm)UDb

Relations like <, >, and = are defined in
terms of their primitive meanings

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(E MU (E\mIV U~V=Db
(E~E,m)UDb

m By U~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

Relations like <, >, and = are defined in
terms of their primitive meanings

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(EmM)U (EEmiIV U~nV=Db _,
(E~E, mUb

m By U~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

Relations like <, >, and = are defined in
terms of their primitive meanings

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(Em)iU (E,m)iV U~V=Db _
(E~E' ' mdUb

m By U~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

Relations like <, >, and = are defined in
terms of their primitive meanings

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(E MU (E\mIV U~V=Db
(E~E,m)UDb

m By U~ V = b, we mean: does (the meaning of)
the relation ~ hold on the meaning of U and V?

m May be specified by a mathematical
expression/equation or rules matching U and V

Relations like <, >, and = are defined in
terms of their primitive meanings

Natural Semantics N

* Simple Imperative Language Semantics
[(E, m) Jv]

(EMJIU (EEmUIUV UopV =N
(EopE, m)UN

Arith

Arithmetic expressions
are defined similarly

Natural Semantics .

* Simple Imperative Language Semantics
[(E, m) Jv]

(EMJIU (EEmUIV UopV=N
(EopE, m)UN
where N is the specified value for U op V

Arith

Arithmetic expressions
are defined similarly

Natural Semantics .

! Questions so far?

Natural Semantics

* Simple Imperative Language Semantics
[(C, m) Um’]

(Commands evaluate to)
maps of variables

(environments or stacks)

\rather than to values

Natural Semantics .

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

] (skip, m) U m

Skip doesn’t
change the state

Natural Semantics -

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

Assign updates the state with a new
mapping of identifier I to value v

(E,m) dv Assig
(I:=E, m) U m[I<-V]

Natural Semantics n

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

Assign updates the state with a new
mapping of identifier I to value v

(EEm)iv
(I:=E, m){ m[I<-v]

Natural Semantics -

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

(E,m) dv Assig
(I:=E, m) U m[I<-V]

Sequencing has the
usual meaning

(C,m)im” (C,m)im”
(C;C,m)im”

eq

Natural Semantics -

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

(E,m) dv Assig
(I:=E, m) U m[I<-V]

Sequencing has the
usual meaning

(Cmim (Com)ium”
(C;C m)um”

eq

Natural Semantics N

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

(E,m) dv Assig
(I:=E, m) U m[I<-V]

Sequencing has the
usual meaning

Cmim (C,m)im”
(C,C", m)ym”

Seq

Natural Semantics .

* Simple Imperative Language Semantics
[(C, m) U m’]

Skip

(skip, m) U m

(E,m) dv Assig
(I:=E, m) U m[I<-V]

Sequencing has the
usual meaning

(C,m)im” (C,m)im"”
(CGC, m)im”

eq

Natural Semantics ,

* Simple Imperative Language Semantics
[(C, m) U m’]

If then else is split into two cases,
one for true and one for false

(B,m)dtrue (C,m)ydm’
(f Bthen Celse C'fi, m) 4 m’

Natural Semantics -

* Simple Imperative Language Semantics
[(C, m) U m’]

If then else is split into two cases,
one for true and one for false

(B,m)itrue (C,m)im’ __
(if Bthen Celse C'fi, m) Y m’

Natural Semantics .

* Simple Imperative Language Semantics
[(C, m) U m’]

If then else is split into two cases,
one for true and one for false

(B,m)itrue (C,m)im’ __
(if Bthen Celse C'fi, m) Y m’

(B, m) U false (C’, m)im" __
(f BthenCelse C'fi, m) U m’

Natural Semantics S

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) \U' false While-F
(whileBdoCod, m) U m

While is likewise split into two cases,
one for true and one for false

Natural Semantics o

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) *U' false While-F
(whileBdoCod, m) U m

While is likewise split into two cases,
one for true and one for false

Natural Semantics N

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) *U' false While-F
(while BdoCod, m) U m

While is likewise split into two cases,
one for true and one for false

Natural Semantics o

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) \U' false While-F
(whileBdoCod, m) U m

(B, m) U true

(C, m)Um’
(while Bdo Cod, m’) U m" s
(while Bdo Cod, m) Y m”

While is likewise split into two cases,
one for true and one for false

Natural Semantics .

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) \U' false While-F
(whileBdoCod, m) U m

(B, m) U true

(Cm)im’
(whileBdo Cod, m") U m" et
(whileBdo Cod, m) U m”

While is likewise split into two cases,
one for true and one for false

Natural Semantics N

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) \U' false While-F
(whileBdoCod, m) U m

(B, m) U true

(C,m)im’
(while B do C od, m')Y m"er
(while B do C od, m) Y m”

While is likewise split into two cases,
one for true and one for false

Natural Semantics .

* Simple Imperative Language Semantics
[(C, m) U m’]

(BI m) \U' false While-F
(whileBdoCod, m) U m

(B, m) U true

(C, m)Um’
(whileBdo Cod, m’) U m"” ..
(whileBdoCod, m) Um”

While is likewise split into two cases,
one for true and one for false

Natural Semantics -

! Questions so far?

67

! Example Derivation

68

Example

command, using the natural semantics

Want to determine the semantics of this
for the language that we just defined.

(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

Example Derivation

69

* Example

[First, if-then-else rule, but we don't]

know if the guard is true or false yet.

If-27?

(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

Example Derivation .

* Example

[First, if-then-else rule, but we don't]

know if the guard is true or false yet.

(x>5, {x->7}) U??
(fx>5theny:=2+ 3elsey:=3+ 4fj,
{x->7})472?

If-27?

Example Derivation .

* Example

[The guard is a relation.]

(x>5, {x->7}) U??
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation .

* Example

[The guard is a relation.]

(X, {x->7})U?? (5, {x->7})U2?2 22> 722 =72? i

(x>5,{x->7}) U ??
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation .

* Example

[So we determine the meaning]
of each side of the relation ...

(X, {X->7})U?2 (5, {x->7})U?2 2?2 > 2?2 =722 i

(x >5, {x->7})U?2?
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation N

* Example

[So we determine the meaning]
of each side of the relation ...

Id

(X, {X->7})7 (5, {x->7}U?2?2 7 >2?2=72?2 gd

(x >5, {x->7})U?2?
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation .

* Example

[So we determine the meaning]
of each side of the relation ...

Id Num

(X, {x->7})u7 (5, {x->7})U5 7>5=72? Rel

(x >5, {x->7})U?2?
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation .

* Example

[Then we use the primitive]
meaning of the > relation

Id Num

(X, {x->7})u7 (5, {x->7})U5 7>5=72? Rel

(x >5, {x->7})U?2?
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation 77

* Example

[Then we use the primitive]
meaning of the > relation

Id Num

(X, {x->7})47 (5, {x->7})U5 7 >5 =true ;.

(x >5, {x->7})U?2?
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation .

* Example

Now, for the if-then-else rule,
we know that the guard is true.

Id Num

(X, {x->7})U7 (5, {x->7})U5 />5=true &

(x >5,{x->7}) U ??
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{X->7})U?2?

If-27?

Example Derivation 79

* Example

Now, for the if-then-else rule,
we know that the guard is true.

Id Num

(X, {x->7})U7 (5, {x->7})U5 />5=true &

(x > 5, {x->7}) U true
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation .

* Example

[We are low on slide room, so Iet’s]

squish what we're done with

Id Num

(X, {x->7})U7 (5, {x->7})U5 />5=true &

(x > 5, {x->7}) U true
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation "

* Example

We are low on slide room, so let’s
squish what we're done with

Rel

(x > 5, {x->7}) U true
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation .

* Example

[Now what?]

Rel

(x > 5, {x->7}) U true
(ifx >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation .

* Example

[Now what?]

Rel

(x > 5, {x->7}) U true
(ifx>5theny:i=2+ 3elsey :=3 + 4f,
{x->7})U7?2?

If-T

Example Derivation N

* Example

We need the meaning of the
if branch, not the else branch

w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(ifx>5theny:=2+ 3elsey =3+ 4fi,
{x->7})U7?2?

If-T

Example Derivation .

* Example

| This is an assignment |

(243, {x->7})12? assign

w (Yi=243,{x->7})
(x > 5, {x->7}) U true U ??
(if x >5theny:=2+ 3elsey:=3 + 4fi,

{X->7})U?2?

If-T

Example Derivation “

* Example

The body is an
arithmetic expression

(2, {x->7})U?? (3, {x->7})4?2? 2?2 + 2?2 =?7?
(243, {x->7})12?

Arith

Assign

w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(if x >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation .

* Example

Num Num

(2, (x>7)02 (3, {x>733 2+3=72?
(2+3, {x->74)u?2?

Determine meaning
of each side

Arith

Assign

w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(if x >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation .

Example

Then use the primitive
meaning of the operation

Num Num

2, >70)2 (3, {x>72)3 2+3=5

Arith

(243, {X->71)L?? , can
w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(if x >5theny:=2+ 3elsey:=3 + 4fi,

{X->7})U?2?

If-T

Example Derivation .

* Example

We can now fill in the
remaining details

Num Num

2, (x>71)02 (3, {x>73)U3 2+3=5
(2+3, {x->7})42?

Arith

Assign

w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(if x >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation o

* Example

We can now fill in the
remaining details

Num Num

(2, {x->7})u2 (3, {x->7})V3 2+3=5
(2+3, {x->7})U5

Arith

Assign

w (Yi=243,{x->7})

(x > 5, {x->7}) U true U ??

(if x >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U7?2?

If-T

Example Derivation o

* Example

We can now fill in the
remaining details

Num Num

(2, {x->7})u2 (3, {x->7})V3 2+3=5
(2+3, {x->7})U5

Arith

Assign

w (Yi=243,{x->7})
(x > 5, {x->7}) U true U {x->7, y->5%}
(if x >5theny:=2+ 3elsey:=3 + 4fi,
{x->7})U72?

If-T

Example Derivation N

* Example

We can now fill in the
remaining details

Num Num

(2, {x->7})u2 (3, {x->7})V3 2+3=5
(2+3, {x->7})U5

Arith

Assign

w (Yi=243,{x->7})
(x > 5, {x->7}) U true U {x->7, y->5%}
(if x >5theny:=2+ 3elsey:=3 + 4fi,
{Xx->7}) 4 {x->7, y->5}

If-T

Example Derivation N

! Questions so far?

94

! Awkward Example

95

* Let in Command
[(C, m) U m’]

(E, m) uv (C, m[I<-v]) U m’
(letI=EinNC, m)im"’

Where m” (y) = m’ (y) for y+ I and
m” (I) = m (I) if m(I) is defined,
and m” (I) is undefined otherwise

Awkward Example o

* Let in Command

(X,{x->5}) U5 (3,{x->5})4U 3

(Xx+3,{x->5}) U 8

(5{x->17}) U5 (X:=x+3,{Xx->5}) U {x->8}

(let x =5in (xX;:=x+3), {x -> 17}) U ?2?

Awkward Example .

* Let in Command

(X,{x->5}) U5 (3,{x->5})4U 3

(Xx+3,{x->5}) U 8

(5{x->17}) U5 (X:=x+3,{x->5}) U {x->8}

(let x =5in (Xi=x+3), {x-> 17}) L {x->17}

Awkward Example N

ﬁ Comment

Simple Imperative Programming Language
introduces variables implicitly through assignment

The let-in command introduces scoped variables
explictly

Clash of constructs apparent in awkward
semantics

Awkward Example .

! Questions so far?

100

! Implementing Semantics

101

ﬁ Interpretation Versus Compilation

m A compiler from language L1 to language L2 is a
brogram that takes an L1 program and for each
niece of code in L1 generates a piece of code in
_2 of same meaning

m An interpreter of L1 in L2 is an L2 program that
executes the meaning of a given L1 program

Implementing Semantics o

ﬁ Interpretation Versus Compilation

m A compiler from language L1 to language L2 is a
brogram that takes an L1 program and for each

niece of code in L1 generates a piece of code in
_2 of same meaning

m An interpreter of L1 in L2 is an L2 program that
executes the meaning of a given L1 program

m Compiler would examine the body of a loop once;

an interpreter would examine it every time the loop
was executed

Implementing Semantics o

* Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source language) in
the language of implementation L2 (target
language)

m Built incrementally
m Start with literals
m Variables
m Primitive operations
m Evaluation of expressions
m Evaluation of commands/declarations

Implementing Semantics o

ﬁ Interpreter

m Takes abstract syntax trees as input
m In simple cases could be just strings

m One procedure for each syntactic category
(nonterminal)

m e.g., one for expressions, another for commands

Implementing Semantics o

* Interpreter

m Takes abstract syntax trees as input
m In simple cases could be just strings

m One procedure for each syntactic category
(nonterminal)

m e.g., one for expressions, another for commands
m From semantics to implementation:

m If Natural Semantics used, tells how to compute
final value from code

m If Transition Semantics used, tells how to
compute next “state”

m To get final value, put in a loop

Implementing Semantics o

* Natural Semantics Example

compute_exp (Var(v), m) = look_up v m
compute_exp (Int(n), _) = Num (n)

compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)
else compute_com (c2,m)

Implementing Semantics o

* Natural Semantics Example

m compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

m May fail to terminate - exceed stack limits
m Returns no useful information then

Implementing Semantics o

{ Questions?

109

! No Class Thursday for Midterm!

110

