+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

ﬁ Objectives for Today

m Reminder: We want to turn strings (code) into
computer instructions

m Done in phases
m Turn strings into abstract syntax trees (parse)

m Translate abstract syntax trees into executable
instructions (interpret or compile)

ﬁ Objectives for Today

m Reminder: We want to turn strings (code) into
computer instructions

m Done in phases
m Turn strings into abstract syntax trees (parse)

m Translate abstract syntax trees into executable
instructions (interpret or compile)

m Tuesday we finished lexing those strings into
tokens, and started the rest of parsing

m Today we will continue parsing

! Questions from Tuesday?

! Parsing, Continued

Lexing and Parsing

Source Program
To parse our source

Lexer program and get abstract
4 | A

Toklens syntax, we need a

Parser grammar defined in terms
_ abstractsyntax) Of the kinds of tokens we

get out of our lexer.

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

Parsing .

* Lexing and Parsing

Source Program
To parse our source

program and get abstract
syntax, we need a

Parser grammar defined in terms
of the kinds of tokens we

get out of our lexer.

Lexer

4 h

Tokens

l
\ Abstra?t Syntax

Semantic Analysis

Symboll Table The output, an abstract
Evaluation/ syntax tree, will track not
Translation just categories, but also
Resullt/IR structure.

Parsing |,

* Parse Trees

m Abstract syntax tree with more detail
m Graphical representation of derivation

Parsing .

* Parse Trees

m Abstract syntax tree with more detail
m Graphical representation of derivation

m Each node labeled with either nonterminal or
terminal

m If node is labeled with a terminal, then it is a
leaf (no sub-trees)

m If node is labeled with a nonterminal, then it
has one branch for each element in the
right-hand side of rule used to substitute for it

Parsing ;

* Example

Consider grammar

<exp> = <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

Problem: Build parse tree for 1 * 1 + 0 as an <exp>

Parsing 0

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

Problem: Build parse tree for 1 * 1 + 0 as an <exp>

[We could derive this more than]

one way, but for now we fix one

Parsing N

* Example

Consider grammar

<exp> = <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

1*1+0: <exp>

Parsing .

* Example

Consider grammar

<exp>] ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

1*1+0:|l<exp>]

| <exp> is the start symbol |

Parsing .

* Example

Consider grammar:

<exp>] :=[<factor>]| <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

1*1+0:(<exp>]
|
| <factor> |

use <exp> ::= <factor> |

Parsing N

* Example

Consider grammar:

<exp> ::=[<factor>)| <factor> + <factor>
[<factor>]::= <bin> | <bin> * <exp>
<bin> =0 |1

1*1+0:|l<exp>]
I
| <factor> | [now derive <factor>]

Parsing N

* Example

Consider grammar

<exp> = <factor> | <factor> + <factor>
(<factor>)::= <bin> |[<bin> ¥ <exp>|
<bin> 0|1

1*1+O:<exp>

<factor> ! [<factor> := <bin> * <exp>]
[<bin> | <exp>

Parsing .

* Example

Consider grammar

<exp>] ::= <factor> | <factor> + <factor>
<factor> ::= <bin> |[<bin> * <exp>|
<bin> | =0 |1

1*1+0: <exp>

<factor> | derive <bin> and <exp> |

Gy ¢ o)

Parsing -

* Example

Consider grammar:

<exp>] ::= <factor> | (<factor> + <factor>]
<factor> ::= <bin> | <bin> * <exp>

(<bin>] 0 |(1)

1*1+0: <exp>

| [use <bin> 1= 1]

<factor>

| and <exp> ::= <factor> + <factor>
[<bin> | x] <exp> |

| <factor> | [+] | <factor> |

Parsing N

* Example

Consider grammar:

<exp>] ::= <factor> | (<factor> + <factor>]
<factor> ::= <bin> | <bin> * <exp>
<bin> =0]1

1*1+0: <exp>

use <bin> ::=1
<fac|t0r> and <exp> ::= <factor> + <factor>
<bin> X <exp>

1 | <factor> | [+] | <factor> |
[1 IS terminal]

b3

Parsing N

* Example

Consider grammar:

<exp> ::= <factor> | (<factor> + <factor>]
|<factor>J::= <bin> | <bin> ¥ <exp>
<bin> =0 |1

1*1+0: <exp>

[use <bin> =1
<fac|t0r> and <exp> ::= <factor> + <factor>
<bin> * <exp> | derive each <factor> |

| — |p

1 | <factor>| + | <factor> |

Parsing .

* Example

Consider grammar:
<exp> .= <factor> | <factor> + <factor>
|<factor>]::=|<bin>])| <bin> * <exp>
<bin> =0 |1

1*1+0: <exp>

<fac|tor>
i * [use <factor> ::= <bin>]
<b:n> /<e>|<p>\
1 [<f|actor>] + [<factor|>]
| <bin> | | <bin> |

Parsing N

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::=(<bin>J| <bin> * <exp>
|<bin>| =0 |1

1*1+0: <exp>

<fac|tor>
<bin> X <exp> [derive each <bin>]
1 <f|actor> + <factor|>
L<bin>] [<bin>]

Parsing .

* Example

Consider grammar:

<exp> ::— <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
|<bin>] —[O | 1 |

1*1+4+0: <exp>

<factor>
<bin> * <eXp>[use <bin>::=1]0]
| | \
1 <f|actor> + <factor|>
| <bin> | | <bin> |

@ Parsing .

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

* .
171+0: <e>|<p> 110 terminal |

<factor>
o d
<bin> <exp>
1 <factor> + <factor>

| I
<bin> <bin>
| |

1 0 Parsing

24

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

1*1+4+0: <exp>

<factor>
o d
<bin> <exp>
1 <factor> + <factor>

| I
<bin> <bin>
| |

1 0 Parsing

25

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

* "
1*1+0: <e>|<l3> [Fringe of tree is string]

<factor> generated by grammar
I
<bin> & <exp>
| _— Ip T~
1 <factor> + <factor>

<bin> <bin>
| |

1 0 Parsing

26

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

‘Note that we could)
1*1+0: <exp> derive this more than

| one way ... we'll get

<faC|t0I‘> \there soon. y
<bin> X <exp>
1 <f|actor> + <factor|>
<bin> <qm>

1 0 Parsing

27

! Questions so far?

Parsing .,

* Parse Tree Data Structures

m Parse trees may be represented by OCaml| datatypes
m One datatype for each nonterminal
m One constructor for each rule

m Defined as mutually recursive collection of
datatype declarations

Parsing .

* Example

m Parse trees may be represented by OCaml| datatypes
m One datatype for each nonterminal
m One constructor for each rule

m Defined as mutually recursive collection of
datatype declarations

Recall grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

\ Parsing

* Example

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

Recall grammar:

<exp> = <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

Parsing .

* Example

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

1*1+4+0: <exp>

<factor>
o d
<bin> <exp>
In /e)l(p\
1 <f|actor> + <factor|>

<bin> <bin>
| |

1 0 Parsing

* Example

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

1*1+ 0: <exp> can be written as Factor

<factor> (Mult
. >||< (One,
<bin> <exp> Plus
| I
1 <f|act04 + }actorr (Bin One,
<bin> <bin> Bin Zero)))
|

|
1 0 Parsing

! Questions so far?

34

{ Ambiguity

35

* Example

Consider grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> =0 |1

‘Note that we could)
1*1+0: <exp> derive this more than

| one way ... we'll get

<faC|t0I‘> \there soon. y
<bin> X <exp>
1 <factor> + <factor>

| I
<bin> <bin>
| |

1 0 Ambiguity

36

* Ambiguous Grammars and Languages

m A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

Ambiguity -

* Ambiguous Grammars and Languages

m A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

m Common sources of ambiguity:
Lack of determination of operator precedence
Lack of determination of operator associativity
m Not the only sources of ambiguity

Ambiguity .

* Ambiguous Grammars and Languages

m A BNF grammar is ambiguous if its language

contains strings for which there is more than
one parse tree

m Common sources of ambiguity:

Lack of determination of operator precedence

Lack of determination of operator associativity
m Not the only sources of ambiguity

m If all BNFs for a language are ambiguous, then the
language is inherently ambiguous

m Otherwise, we will try to disambiguate

Ambiguity o

* Example: Ambiguous Grammar

<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Ambiguity .

* Example: Ambiguous Grammar
<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum>

1N

<Sum> + <Sum>

N |

<Sum> + <Slfm> 0
I

0 1

Ambiguity .

* Example: Ambiguous Grammar
<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum> <SL||m>

N N

<Sum> + <Sum> <Sum> + <Sum>

N | | pd

<Sum> + <Stfm> 0 0 <Sum> + <Sum>
I I I

0 1 1 0

Ambiguity .

! Questions so far?

Ambiguity .

* Example: Ambiguous Grammar

<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum> <SL||m>

1N <\Sum>

<Sum> + <Sum> <Sum> +

PN | | 1IN

<Sum> + <Stfm> 0 0 <Sum> + <Sum>
I I I

0 1 1 0

| How do we disambiguate? |

Ambiguity .

* Disambiguating a Grammar

m Given an ambiguous grammar G with start symbol
S, find a grammar G’ with the same start symbol S,
such that language of G = language of G’

= Not always possible
= No algorithm in general

| How do we disambiguate? |

Ambiguity N

* Disambiguating a Grammar

m Given an ambiguous grammar G with start symbol
S, find a grammar G’ with the same start symbol S,
such that language of G = language of G’

= Not always possible
= No algorithm in general

m But often in programming languages, when faced
with an undecidable problem, we can either

m solve some useful decidable subproblems, or
= approximately solve the whole problem.

| How do we disambiguate? |

Ambiguity .

ﬁ Disambiguating a Grammar

m Idea: Each nonterminal represents all strings
having some property

m Identify these properties (often in terms of
things that cannot happen)

m Use these properties to inductively guarantee
every string in language has a unique parse

Ambiguity .

* Disambiguating a Grammar

m Idea: Each nonterminal represents all strings
having some property

m Identify these properties (often in terms of
things that cannot happen)

m Use these properties to inductively guarantee
every string in language has a unique parse

m We'll handle this in more detail later, but let’s start
with some examples

Ambiguity .

* Example: Ambiguous Grammar
<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum> <SL||m>

N N

<Sum> + <Sum> <Sum> + <Sum>

N | | pd

<Sum> + <Stfm> 0 0 <Sum> + <Sum>
I I I

0 1 1 0

[Source of ambiguity: associativityAJ
mbiguity .

* How to Enforce Associativity

m Have at most one recursive call per production

m When two or more recursive calls would be
natural, to refactor:
m Leave rightmost call for right associativity

m |Leave leftmost call for left associativity

Ambiguity -

* Example: Disambiguation
<Sum> ::=0] 1] <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum> <SL||m>

N N

<Sum> + <Sum> <Sum> + <Sum>

N | | pd

<Sum> + <Stfm> 0 0 <Sum> + <Sum>
I I I

0 1 1 0

[Source of ambiguity: associativityAJ
mbiguity n

* Example: Disambiguation
<Sum> ::=0]1]| <Sum> + <Sum> | (<Sum>)
Problem: How can we derive 0 + 1 + 0 : <Sum>?

<Sum> <SL||m>

N N

<Sum> + <Sum> <Sum> + <Sum>

N | | pd

<Sum> + <Stfm> 0 0 <Sum> + <Sum>
I I I

0 1 1 0

[Source of ambiguity: associativityAJ
mbiguity -

* Example: Disambiguation

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)

[Source of ambiguity: associativityAJ
mbiguity -

* Example: Disambiguation

<Sum> =011 | <Sum> + <Sum> | (<Sum>)

[Source of ambiguity: associativityAJ
mbiguity N

* Example: Disambiguation

<Sum> =011 | <Sum> + <Sum> | (<Sum>)

<Sum> <Num> + <Sum>

[Source of ambiguity: associativityAJ
mbiguity .

* Example: Disambiguation

<Sum> =01 | <Sum> + <Sum> | (<Sum>)

<Sum> <Num> + <Sum>
<Num> ::=0] 1| (<Sum>)

[Source of ambiguity: associativityAJ
mbiguity ,

* Example: Disambiguation

<Sum> ;=011 | <Sum> + <Sum> | (<Sum>)
<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::=0] 1| (<Sum>)

[Source of ambiguity: associativityAJ
mbiguity -

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

Ambiguity .

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

um> <Sum>

IR I

<Sum> + <Sum> <Sum> + <Sum>

P N | | |
<Su|m> + <SLI|m> 0 0 <Sum{+ <\Sum>
I I

0 1 1 0
Ambiguity S

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

<STm> <Sum>

P N P N

<Num> + <Sum> <Num> + <Sum>

PN | | |
<Su|m> + <SLI|m> 0 0 <Sum{+ <\Sum>
I I
0 1 1 0

Ambiguity o

* Example: Disambiguation

<Sum = <Num> | <Num> + <Sum>
<Num> ::=0] 1| (<Sum>)
<Sum> <Sum>
N el N
<Num> + <Sum> <|I\|um> + <Sum>
| | S\
0 0 <Sum{+ <Sum>
I I
1 0

Ambiguity N

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

<Sum>

N

<Num> + <Sum>
| N
0 <Sum> + <Sum>

I |
1 0

Ambiguity o

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

<Sum>

N

<Num> + <Sum>

| N

0 <Num> + <Sum>

I |
1 0

Ambiguity .

* Example: Disambiguation

<Sum> ::
<Num> ::

<Num> | <Num> + <Sum>
0]1] (<Sum>)

<Sum>

N

<Num> + <Sum>

| N

0 <Num> + <Sum>

I I
1 <Num>
|

0 Ambiguity

* Example: Disambiguation

Ambiguous grammar:
<exp>::=0]|1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
0+1+0
1*1+1

Sources of ambiguity:
associativity and precedence

Ambiguity -

* Example: Disambiguation

Ambiguous grammar:
<exp>::=0]|1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
0+1+0
[1*1+1]

Sources of ambiguity:
associativity and precedence

Ambiguity N

* Example: Disambiguation

Ambiguous grammar:
<exp>::=0]|1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
0+1+0
[1*1+1]

Sources of ambiguity:
associativity and|precedence]

Ambiguity o

* Operator Precedence

m Operators of highest precedence evaluated first
(that is, they bind more tightly)

m Precedence for infix binary operators given in
following table

m Needs to be reflected in grammar

Ambiguity o

* Precedence Table - Dated Sample

Fortran | Pascal | C/C++ | Ada SML
highest X * [| +4+, -- X div,
diV, mOdl /l
mod *
*l/ +l- *I/I % *I/I +l -IA
mod
lowest +, - +, - +, -

Ambiguity69

| Precedence in Grammar

= Higher precedence translates to longer
derivation chain

Ambiguity .

10/4/07

* Precedence in Grammar

= Higher precedence translates to longer
derivation chain

m Example:
<exp>::i=0]1 | <exp> + <exp>
| <exp> * <exp>

Ambiguity .

10/4/07

* Precedence in Grammar

= Higher precedence translates to longer
derivation chain

m Example:
<exp>::i=0]1 | <exp> + <exp>
| <exp> * <exp>
m Becomes
<exp> ::= <mult_exp>
| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id>:=0]1

10/4/07

Ambiguity .

! Questions so far?

73

! Implementing Parsers

74

* Parser Code

m <grammar>.mly defines one parsing function per
entry point

m Parsing function takes a lexing function (lexer
ouffer to token) and a lexer buffer as arguments

m Returns semantic attribute of corresponding entry
noint

Implementing Parsers .

* Ocamlyacc Input

File format:
%<
< header>
%}
< declarations>
%%
<rules>
%%
< trailer>

Implementing Parsers .

* Ocamlyacc < header>

Contains arbitrary Ocaml code

Typically used to give types and functions needed
for the semantic actions of rules and to give
specialized error recovery

May be omitted
<footer> similar. Possibly used to call parser

Implementing Parsers ,

7

* Ocamlyacc <declarations>

m %token symbol ... symbol
Declare given symbols as tokens

m %token <type> symbol ... symbol
Declare given symbols as token constructors,
taking an argument of type <type>

m %start symbol ... symbol
Declare given symbols as entry points; functions of
same names in <grammar>.ml

Implementing Parsers .

* Ocamlyacc <declarations>

m %type <type> symbol ... symbol

Specify type of attributes for given symbols.
Mandatory for start symbols

m %left symbol ... symbol

%right symbol ... symbol

m %nonassoc symbol ... symbol

Associate precedence and associativity to given
symbols. Same line,same precedence; earlier line,
lower precedence (broadest scope)

Implementing Parsers 79

* Ocamlyacc <rules>

m nonterminal :
symbol ... symbol { semantic_action }
|

| symbol ... symbol { semantic_action }

/
m Semantic actions are arbitrary Ocaml
expressions

m Must be of same type as declared (or inferred)
for nonterminal

m Access semantic attributes (values) of symbols
by position: $1 for first symbol, $2 to second ...

Implementing Parsers .

* Example - Base types

type expr =
Term_as_Expr of term
Plus_Expr of (term * expr)
Minus_Expr of (term * expr)
and term =
Factor_as_Term of factor
Mult_Term of (factor * term)
Div_Term of (factor * term)
and factor =

| Id_as_Factor of string

| Parenthesized_Expr_as_Factor of expr

Implementing Parsers "

* Example - Lexer (exprlex.mil)

{ (*open Exprparse*) }

let numeric = ['0' - '9']

let letter =['a’ - 'Z' 'A' - 'Z]
rule token = parse

"+" {Plus_token}

"= {Minus_token}

1 LTimes_token}

"/" {Divide_token}

"(" {Left_parenthesis}
""" {Right_parenthesis}
letter (letter|numeric|"_")* as id {Id_token id}
[\t '\n'] {token lexbuf}
eof {EOL}

Implementing Parsers .

* Example - Parser (exprparse.mly)

%9{ open Expr

%}

%token <string> Id_token

%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token

%token Plus_token Minus_token

%token EOL

%start main

%type <expr> main

%%

Implementing Parsers .

* Example - Parser (exprparse.mly)

expr:
term { Term_as_Expr $1 }

term Plus_token expr { Plus_Expr ($1, $3) }
term Minus_token expr { Minus_Expr ($1, $3) }
term:

factor { Factor_as_Term $1 }

factor Times_token term { Mult_Term ($1, $3) }
factor Divide_token term { Div_Term ($1, $3) }

Implementing Parsers N

* Example - Parser (exprparse.mly)

factor:
| Id_token { Id_as_Factor $1 }

| Left_parenthesis expr Right_parenthesis
{Parenthesized_Expr_as_Factor $2 }

main:
| expr EOL { $1 }

Implementing Parsers .

* Example - Using Parser

#use "expr.ml”;;
#use "exprparse.ml";:

#use "exprlex.ml";;

let test s =
let lexbuf = Lexing.from_string (s"\n") in
main token lexbuf;;

Implementing Parsers “

i Example - Using Parser

test "a + b";;
- 1 expr =
Plus_Expr
(Factor_as_Term
(Id_as_Factor "a"),
Term_as_Expr
(Factor_as_Term (Id_as_Factor "b")))

Implementing Parsers .

{ Questions?

88

! Next Class: Underlying Algorithm

89

* Next Class

MP8 due next Tuesday

WAS8 due next Thursday

All deadlines can be found on course website
Use office hours and class forums for help

90

