
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* 2

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Tuesday we finished lexing those strings into

tokens, and started the rest of parsing
■ Today we will continue parsing

* 3

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Tuesday we finished lexing those strings into

tokens, and started the rest of parsing
■ Today we will continue parsing

4

 Questions from Tuesday?

5

 Parsing, Continued

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To parse our source
program and get abstract
syntax, we need a
grammar defined in terms
of the kinds of tokens we
get out of our lexer.

Parsing 6

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To parse our source
program and get abstract
syntax, we need a
grammar defined in terms
of the kinds of tokens we
get out of our lexer.

The output, an abstract
syntax tree, will track not
just categories, but also
structure.

Parsing 7

* 8

■ Abstract syntax tree with more detail
■ Graphical representation of derivation
■ Each node labeled with either nonterminal or

terminal
■ If node is labeled with a terminal, then it is a

leaf (no sub-trees)
■ If node is labeled with a nonterminal, then it

has one branch for each element in the
right-hand side of rule used to substitute for it

Parse Trees

Parsing

* 9

■ Abstract syntax tree with more detail
■ Graphical representation of derivation
■ Each node labeled with either nonterminal or

terminal
■ If node is labeled with a terminal, then it is a

leaf (no sub-trees)
■ If node is labeled with a nonterminal, then it

has one branch for each element in the
right-hand side of rule used to substitute for it

Parse Trees

Parsing

* 10

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

Problem: Build parse tree for 1 * 1 + 0 as an <exp>

Parsing

* 11

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

Problem: Build parse tree for 1 * 1 + 0 as an <exp>

We could derive this more than
one way, but for now we fix one

Parsing

* 12

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

Parsing

* 13

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp> <exp> is the start symbol

Parsing

* 14

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>
use <exp> ::= <factor>

<factor>

Parsing

* 15

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor> now derive <factor>

Parsing

* 16

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor> <factor> ::= <bin> * <exp>

*<bin> <exp>

Parsing

* 17

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor>

*<bin> <exp>

derive <bin> and <exp>

Parsing

* 18

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor>

*<bin> <exp>

use <bin> ::= 1
and <exp> ::= <factor> + <factor>

1 <factor> <factor>+

Parsing

* 19

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor>

*<bin> <exp>

1 is terminal

1 <factor> <factor>+

use <bin> ::= 1
and <exp> ::= <factor> + <factor>

Parsing

* 20

Example

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

<factor>

*<bin> <exp> derive each <factor>

1 <factor> <factor>+

use <bin> ::= 1
and <exp> ::= <factor> + <factor>

Parsing

* 21

Example

<factor>

*<bin> <exp> use <factor> ::= <bin>

1 <factor> <factor>+

<bin> <bin>

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

Parsing

* 22

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

derive each <bin>

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

Parsing

* 23

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

use <bin> ::= 1 | 0

1

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

0 Parsing

* 24

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>
1 | 0 terminal

Parsing

* 25

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>

Parsing

* 26

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp> Fringe of tree is string
generated by grammar

Parsing

* 27

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>
Note that we could
derive this more than
one way … we’ll get
there soon.

Parsing

28

 Questions so far?

Parsing

* 29

Parse Tree Data Structures

■ Parse trees may be represented by OCaml datatypes
■ One datatype for each nonterminal
■ One constructor for each rule
■ Defined as mutually recursive collection of

datatype declarations

Parsing

* 30

Example

■ Parse trees may be represented by OCaml datatypes
■ One datatype for each nonterminal
■ One constructor for each rule
■ Defined as mutually recursive collection of

datatype declarations

Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

Parsing

* 31

Example

Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

Parsing

* 32

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

1 * 1 + 0 : <exp>

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

Parsing

type exp = Factor of factor | Plus of factor * factor
and factor = Bin of bin | Mult of bin * exp
and bin = Zero | One

* 33

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

1 * 1 + 0 : <exp> can be written as Factor
 (Mult
 (One,
 Plus
 (Bin One,
 Bin Zero)))

Parsing

34

 Questions so far?

35

 Ambiguity

* 36

Example

<factor>

*<bin> <exp>

1 <factor> <factor>+

<bin> <bin>

1 0

Consider grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

1 * 1 + 0 : <exp>
Note that we could
derive this more than
one way … we’ll get
there soon.

Ambiguity

* 37

Ambiguous Grammars and Languages

■ A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree
■ Common sources of ambiguity:

■ Lack of determination of operator precedence
■ Lack of determination of operator associativity

■ Not the only sources of ambiguity
■ If all BNFs for a language are ambiguous, then the

language is inherently ambiguous
■ Otherwise, we will try to disambiguate

Ambiguity

* 38

Ambiguous Grammars and Languages

■ A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree
■ Common sources of ambiguity:

■ Lack of determination of operator precedence
■ Lack of determination of operator associativity

■ Not the only sources of ambiguity
■ If all BNFs for a language are ambiguous, then the

language is inherently ambiguous
■ Otherwise, we will try to disambiguate

Ambiguity

* 39

Ambiguous Grammars and Languages

■ A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree
■ Common sources of ambiguity:

■ Lack of determination of operator precedence
■ Lack of determination of operator associativity

■ Not the only sources of ambiguity
■ If all BNFs for a language are ambiguous, then the

language is inherently ambiguous
■ Otherwise, we will try to disambiguate

Ambiguity

40

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Ambiguous Grammar

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

41

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Ambiguous Grammar

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

42

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Ambiguous Grammar

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

43

 Questions so far?

Ambiguity

44

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Ambiguous Grammar

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

How do we disambiguate?
Ambiguity

Disambiguating a Grammar

■ Given an ambiguous grammar G with start symbol
S, find a grammar G’ with the same start symbol S,
such that language of G = language of G’

■ Not always possible
■ No algorithm in general
■ But often in programming languages, when faced

with an undecidable problem, we can either
■ solve some useful decidable subproblems, or
■ approximately solve the whole problem.

* 45

How do we disambiguate?
Ambiguity

Disambiguating a Grammar

■ Given an ambiguous grammar G with start symbol
S, find a grammar G’ with the same start symbol S,
such that language of G = language of G’

■ Not always possible
■ No algorithm in general
■ But often in programming languages, when faced

with an undecidable problem, we can either
■ solve some useful decidable subproblems, or
■ approximately solve the whole problem.

* 46

How do we disambiguate?
Ambiguity

Disambiguating a Grammar

■ Idea: Each nonterminal represents all strings
having some property

■ Identify these properties (often in terms of
things that cannot happen)

■ Use these properties to inductively guarantee
every string in language has a unique parse

■ We’ll handle this in more detail later, but let’s start
with some examples

* 47
Ambiguity

Disambiguating a Grammar

■ Idea: Each nonterminal represents all strings
having some property

■ Identify these properties (often in terms of
things that cannot happen)

■ Use these properties to inductively guarantee
every string in language has a unique parse

■ We’ll handle this in more detail later, but let’s start
with some examples

* 48
Ambiguity

49

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Ambiguous Grammar

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Source of ambiguity: associativity
Ambiguity

50

How to Enforce Associativity

■ Have at most one recursive call per production
■ When two or more recursive calls would be

natural, to refactor:
■ Leave rightmost call for right associativity
■ Leave leftmost call for left associativity

Ambiguity

51

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Disambiguation

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Source of ambiguity: associativity
Ambiguity

52

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive 0 + 1 + 0 : <Sum>?

Example: Disambiguation

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Source of ambiguity: associativity
Ambiguity

53

Example: Disambiguation

Source of ambiguity: associativity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

54

Example: Disambiguation

Source of ambiguity: associativity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

55

Example: Disambiguation

Source of ambiguity: associativity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

56

Example: Disambiguation

Source of ambiguity: associativity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

57

Example: Disambiguation

Source of ambiguity: associativity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

58

Example: Disambiguation

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

Ambiguity

59

Example: Disambiguation

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

60

Example: Disambiguation

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

 <Sum> <Sum>

 <Num> + <Sum> <Num> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

61

Example: Disambiguation

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

 <Sum> <Sum>

 <Num> + <Sum> <Num> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

Ambiguity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

62

Example: Disambiguation

 <Sum>

 <Num> + <Sum>

 0 <Sum> + <Sum>

 1 0

Ambiguity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

63

Example: Disambiguation

 <Sum>

 <Num> + <Sum>

 0 <Num> + <Sum>

 1 0

Ambiguity

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> ::= <Num> | <Num> + <Sum>
<Num> ::= 0 | 1 | (<Sum>)

64

Example: Disambiguation

 <Sum>

 <Num> + <Sum>

 0 <Num> + <Sum>

 1 <Num>

 0 Ambiguity

* 65

Example: Disambiguation

Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
 0 + 1 + 0
 1 * 1 + 1

Sources of ambiguity:
 associativity and precedence

Ambiguity

* 66

Example: Disambiguation

Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
 0 + 1 + 0
 1 * 1 + 1

Sources of ambiguity:
 associativity and precedence

Ambiguity

* 67

Example: Disambiguation

Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp> | <exp> * <exp>

Strings with more then one parse:
 0 + 1 + 0
 1 * 1 + 1

Sources of ambiguity:
 associativity and precedence

Ambiguity

68

Operator Precedence

■ Operators of highest precedence evaluated first
(that is, they bind more tightly)

■ Precedence for infix binary operators given in
following table

■ Needs to be reflected in grammar

Ambiguity

69

Precedence Table - Dated Sample

Fortran Pascal C/C++ Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod, /,

*

*, / +, - *, /, % *, /,
mod

+, -, ^

 lowest +, - +, - +, - ::

Ambiguity

10/4/07 70

Precedence in Grammar

■ Higher precedence translates to longer
derivation chain

■ Example:
 <exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>

■ Becomes
<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1 Ambiguity

10/4/07 71

Precedence in Grammar

■ Higher precedence translates to longer
derivation chain

■ Example:
 <exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>

■ Becomes
<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1 Ambiguity

10/4/07 72

Precedence in Grammar

■ Higher precedence translates to longer
derivation chain

■ Example:
 <exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>

■ Becomes
<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1 Ambiguity

73

 Questions so far?

74

 Implementing Parsers

* 75

Parser Code

■ <grammar>.mly defines one parsing function per
entry point

■ Parsing function takes a lexing function (lexer
buffer to token) and a lexer buffer as arguments

■ Returns semantic attribute of corresponding entry
point

Implementing Parsers

* 76

Ocamlyacc Input

File format:
%{
 <header>
%}
 <declarations>
%%
 <rules>
%%
 <trailer>

Implementing Parsers

* 77

Ocamlyacc <header>

■ Contains arbitrary Ocaml code
■ Typically used to give types and functions needed

for the semantic actions of rules and to give
specialized error recovery

■ May be omitted
■ <footer> similar. Possibly used to call parser

Implementing Parsers

* 78

Ocamlyacc <declarations>

■ %token symbol … symbol
Declare given symbols as tokens

■ %token <type> symbol … symbol
Declare given symbols as token constructors,
taking an argument of type <type>

■ %start symbol … symbol
Declare given symbols as entry points; functions of
same names in <grammar>.ml

Implementing Parsers

* 79

Ocamlyacc <declarations>

■ %type <type> symbol … symbol
 Specify type of attributes for given symbols.

Mandatory for start symbols
■ %left symbol … symbol
■ %right symbol … symbol
■ %nonassoc symbol … symbol
 Associate precedence and associativity to given

symbols. Same line,same precedence; earlier line,
lower precedence (broadest scope)

Implementing Parsers

* 80

Ocamlyacc <rules>

■ nonterminal :
 symbol ... symbol { semantic_action }
 | ...
 | symbol ... symbol { semantic_action }
 ;

■ Semantic actions are arbitrary Ocaml
expressions

■ Must be of same type as declared (or inferred)
for nonterminal

■ Access semantic attributes (values) of symbols
by position: $1 for first symbol, $2 to second …

Implementing Parsers

* 81

Example - Base types

(* File: expr.ml *)
type expr =
 | Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 | Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 | Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr

Implementing Parsers

* 82

Example - Lexer (exprlex.mll)

{ (*open Exprparse*) }
let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
 | "+" {Plus_token}
 | "-" {Minus_token}
 | "*" {Times_token}
 | "/" {Divide_token}
 | "(" {Left_parenthesis}
 | ")" {Right_parenthesis}
 | letter (letter|numeric|"_")* as id {Id_token id}
 | [' ' '\t' '\n'] {token lexbuf}
 | eof {EOL}

Implementing Parsers

* 83

Example - Parser (exprparse.mly)

%{ open Expr
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%

Implementing Parsers

* 84

Example - Parser (exprparse.mly)

expr:
 | term { Term_as_Expr $1 }
 | term Plus_token expr { Plus_Expr ($1, $3) }
 | term Minus_token expr { Minus_Expr ($1, $3) }
term:
 | factor { Factor_as_Term $1 }
 | factor Times_token term { Mult_Term ($1, $3) }
 | factor Divide_token term { Div_Term ($1, $3) }

Implementing Parsers

* 85

Example - Parser (exprparse.mly)

factor:
 | Id_token { Id_as_Factor $1 }
 | Left_parenthesis expr Right_parenthesis

{Parenthesized_Expr_as_Factor $2 }
main:
 | expr EOL { $1 }

Implementing Parsers

* 86

Example - Using Parser

#use "expr.ml";;
…
#use "exprparse.ml";;
…
#use "exprlex.ml";;
…
let test s =
 let lexbuf = Lexing.from_string (s^"\n") in
 main token lexbuf;;

Implementing Parsers

* 87

Example - Using Parser

test "a + b";;
- : expr =
Plus_Expr
 (Factor_as_Term
 (Id_as_Factor "a"),
 Term_as_Expr
 (Factor_as_Term (Id_as_Factor "b")))

Implementing Parsers

88

 Questions?

89

 Next Class: Underlying Algorithm

Next Class

90

■ MP8 due next Tuesday
■ WA8 due next Thursday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

