
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* 2

Objectives for Today

■ We want to turn strings (code) into computer
instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Today we will learn the first step of parsing, which

is lexing those raw input strings into tokens

3

 Questions from last week?

4

 Syntax

* 5

Meta-discourse

■ Language Syntax and Semantics
■ Syntax: form
■ Regular Expressions, DFSAs and NDFSAs
■ Grammars

■ Semantics: meaning
■ Natural Semantics
■ Transition Semantics

■ Compilers and interpreters (when correctly
implemented) map from the syntax of programs
(as written) to their semantics (as executed)

 Syntax

* 6

Meta-discourse

■ Language Syntax and Semantics
■ Syntax: form
■ Regular Expressions, DFSAs and NDFSAs
■ Grammars

■ Semantics: meaning
■ Natural Semantics
■ Transition Semantics

■ Compilers and interpreters (when correctly
implemented) map from the syntax of programs
(as written) to their semantics (as executed)

 Syntax

* 7

Meta-discourse

■ Language Syntax and Semantics
■ Syntax: form
■ Regular Expressions, DFSAs and NDFSAs
■ Grammars

■ Semantics: meaning
■ Natural Semantics
■ Transition Semantics

■ Compilers and interpreters (when correctly
implemented) map from the syntax of programs
(as written) to their semantics (as executed)

 Syntax

* 8

Meta-discourse

1 + 2

 1 + 2 = 3

Constant ConstantBinary Operator

Syntax

Semantics

 Syntax

* 9

Meta-discourse

1 + 2

 1 + 2 = 3

Constant ConstantBinary Operator

Syntax

Semantics

 Syntax

* 10

Meta-discourse

1 * 2

 1 * 2 = 3

Constant ConstantBinary Operator

Syntax

(Bizarre)
Semantics

 Syntax

* 11

Meta-discourse

1 + dinosaur

 1 + dinosaur = 3

Constant ConstantBinary Operator

Syntax

(Bizarre)
Semantics

 Syntax

* 12

Meta-discourse

1 + 2

 1 + 2 = 3

Constant ConstantBinary Operator

Syntax

Semantics

 Syntax

* 13

Language Syntax

1 + 2

Constant ConstantBinary Operator

Syntax

 Syntax

* 14

Language Syntax

■ Syntax describe which strings of symbols are
meaningful expressions in a language

■ It takes more than syntax to understand a
language; need meaning (semantics) too

■ Syntax is the entry point

 Syntax

15

 Questions so far?

16

 Lexing

* 17

Lexing and Parsing

■ Converting strings (representing programs) to
abstract syntax trees done in two phases:
■ Lexing: Converting strings (or streams of

characters) into lists/streams of tokens (the
“words” of the language)
■ Specification Technique: Regular Expressions

■ Parsing: Convert lists/streams of tokens into
abstract syntax trees
■ Specification Technique: BNF Grammars

 Lexing

* 18

Lexing and Parsing

■ Converting strings (representing programs) to
abstract syntax trees done in two phases:
■ Lexing: Converting strings (or streams of

characters) into lists/streams of tokens (the
“words” of the language)
■ Specification Technique: Regular Expressions

■ Parsing: Convert lists/streams of tokens into
abstract syntax trees
■ Specification Technique: BNF Grammars

 Lexing

* 19

Lexing and Parsing

■ Converting strings (representing programs) to
abstract syntax trees done in two phases:
■ Lexing: Converting strings (or streams of

characters) into lists/streams of tokens (the
“words” of the language)
■ Specification Technique: Regular Expressions

■ Parsing: Convert lists/streams of tokens into
abstract syntax trees
■ Specification Technique: BNF Grammars

 Lexing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

20
 Lexing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

21
 Lexing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To lex our source program
and get tokens, we need
regular expressions,
automata, and a specific
kind of grammar.

 Lexing
22

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To lex our source program
and get tokens, we need
regular expressions,
automata, and a specific
kind of grammar.

Tokens just tell us what
category each part of the
input falls into.

 Lexing
23

* 24

Lexing and Parsing

1 + 2

Constant ConstantBinary Operator

Syntax

Tokens just tell us what
category each part of the
input falls into.

 Lexing

Lexing and Parsing

Source Program

Tokens

Abstract Syntax

Semantic Analysis

Symbol Table

Evaluation/
Translation

Result/IR

Lexer

Parser

To lex our source program
and get tokens, we need
regular expressions,
automata, and a specific
kind of grammar.

Tokens just tell us what
category each part of the
input falls into.

 Lexing
25

26

 Regular Expressions

* 27

Regular Expressions - Review

■ Start with given character set (alphabet):
■ For example, {a, b, c, … }

■ Empty Set:
■ L(Φ) = { }

■ Empty String:
■ L(ε) = {“”}

■ Literals: Each character is a regular expression
■ Represents the set of one string containing just

that character
■ L(a) = {a}

Regular Expressions

* 28

Regular Expressions - Review

■ Start with given character set (alphabet):
■ For example, {a, b, c, … }

■ Empty Set:
■ L(Φ) = { }

■ Empty String:
■ L(ε) = {“”}

■ Literals: Each character is a regular expression
■ Represents the set of one string containing just

that character
■ L(a) = {a}

Regular Expressions

* 29

Regular Expressions - Review

■ Start with given character set (alphabet):
■ For example, {a, b, c, … }

■ Empty Set:
■ L(Φ) = { }

■ Empty String:
■ L(ε) = {“”}

■ Literals: Each character is a regular expression
■ Represents the set of one string containing just

that character
■ L(a) = {a}

Regular Expressions

* 30

Regular Expressions - Review

■ Start with given character set (alphabet):
■ For example, {a, b, c, … }

■ Empty Set:
■ L(Φ) = { }

■ Empty String:
■ L(ε) = {“”}

■ Literals: Each character is a regular expression
■ Represents the set of one string containing just

that character
■ L(a) = {a}

Regular Expressions

* 31

Regular Expressions - Review

■ If x and y are regular expressions, then their
concatenation xy is a regular expression
■ Represents the set of strings made from first a

string described by x then a string described by y
■ L(xy) = L(x) ⨯ L(y). e.g., if L(x) = {a, ab} and

L(y) = {c, d}, then L(xy) = {ac, ad, abc, abd}
■ If x and y are regular expressions, then their

alternation x ∨ y (sometimes x | y) is too
■ Represents the set of strings described by x or y
■ L(x ∨ y) = L(x) ∪ L(y). e.g., if L(x) = {a, ab}

and L(y) = {c, d}, then L(x ∨ y) = {a, ab, c, d}
Regular Expressions

* 32

Regular Expressions - Review

■ If x and y are regular expressions, then their
concatenation xy is a regular expression
■ Represents the set of strings made from first a

string described by x then a string described by y
■ L(xy) = L(x) ⨯ L(y). e.g., if L(x) = {a, ab} and

L(y) = {c, d}, then L(xy) = {ac, ad, abc, abd}
■ If x and y are regular expressions, then their

alternation x ∨ y (sometimes x | y) is too
■ Represents the set of strings described by x or y
■ L(x ∨ y) = L(x) ∪ L(y). e.g., if L(x) = {a, ab}

and L(y) = {c, d}, then L(x ∨ y) = {a, ab, c, d}
Regular Expressions

* 33

Regular Expressions - Review

■ Grouping: If x is a regular expression, so is (x)
■ Represents the same thing as x

■ Repeat: If x is a regular expression, then so is x*
■ It represents strings made from concatenating zero

or more strings from x
■ L(x*) = L(ε) ∪ L(x) ∪ (L(x) ⨯ L (x)) ∪ … e.g.,

if L(x) = {a, ab}, then L(x*) = {“”, a, ab, aa, aab,
abab, …}

Regular Expressions

* 34

Regular Expressions - Review

■ Grouping: If x is a regular expression, so is (x)
■ Represents the same thing as x

■ Repeat: If x is a regular expression, then so is x*
■ It represents strings made from concatenating zero

or more strings from x
■ L(x*) = L(ε) ∪ L(x) ∪ (L(x) ⨯ L (x)) ∪ … e.g.,

if L(x) = {a, ab}, then L(x*) = {“”, a, ab, aa, aab,
abab, …}

Regular Expressions

* 35

Aside for Math Nerds

■ On a given alphabet, these form a semiring:
■ Φ is 0 (additive identity)
■ ε is 1 (multiplicative identity)
■ x ∨ y is x + y (addition)
■ xy is x ⋅ y (multiplication)
■ If curious, try proving the semiring laws :)

■ Special kind—a (star-continuous) Kleene algebra:
■ The Kleene star x* can be viewed as the infinite

sum of powers of x (the closure)
■ Furthermore, we have x + x = x (idempotence)
■ Imposes a partial ordering and other goodies!

■ Regular Expressions

* 36

Aside for Math Nerds

■ On a given alphabet, these form a semiring:
■ Φ is 0 (additive identity)
■ ε is 1 (multiplicative identity)
■ x ∨ y is x + y (addition)
■ xy is x ⋅ y (multiplication)
■ If curious, try proving the semiring laws :)

■ Special kind—a (star-continuous) Kleene algebra:
■ The Kleene star x* can be viewed as the infinite

sum of powers of x (the closure)
■ Furthermore, we have x + x = x (idempotence)
■ Imposes a partial ordering and other goodies!

■ Regular Expressions

* 37

Example Regular Expressions

■ (0∨1)*1
■ Set of all strings of 0s and 1s ending in 1
■ {1, 01, 11,…}

■ a*b(a*)
■ Set of all strings of as and bs with exactly one b

■ ((01) ∨(10))*
■ You tell me

■ Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

Regular Expressions

* 38

Example Regular Expressions

■ (0∨1)*1
■ Set of all strings of 0s and 1s ending in 1
■ {1, 01, 11,…}

■ a*b(a*)
■ Set of all strings of as and bs with exactly one b

■ ((01) ∨(10))*
■ You tell me

■ Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

Regular Expressions

* 39

Example Regular Expressions

■ (0∨1)*1
■ Set of all strings of 0s and 1s ending in 1
■ {1, 01, 11,…}

■ a*b(a*)
■ Set of all strings of as and bs with exactly one b

■ ((01) ∨(10))*
■ You tell me

■ Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

Regular Expressions

* 40

Example Regular Expressions

■ (0∨1)*1
■ Set of all strings of 0s and 1s ending in 1
■ {1, 01, 11,…}

■ a*b(a*)
■ Set of all strings of as and bs with exactly one b

■ ((01) ∨(10))*
■ You tell me

■ Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

Regular Expressions

41

 Questions so far?

Regular Expressions

42

 Equivalently…

Regular Expressions

* 43

Right Regular Grammars

■ Subclass of BNF (covered in detail soon)
■ Only rules of form

<nonterminal> ::= <terminal><nonterminal> or
<nonterminal> ::= <terminal> or
<nonterminal> ::= ε

■ Defines same class of languages as
regular expressions

■ Important for writing lexers (programs that
convert strings of characters into strings of tokens)

■ Connection to nondeterministic finite state
automata: nonterminals = states; rule = edge~ ~

Regular Expressions

* 44

Example

■ Right regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

■ Generates even length strings where every
initial substring of even length has same
number of 0s as 1s

Regular Expressions

* 45

Example

■ Right regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

■ Generates even length strings where every
initial substring of even length has same
number of 0s as 1s

Regular Expressions

* 46

Implementing Regular Expressions

■ Regular expressions can be good for generating
strings in language

■ They are not so good for recognizing when a
string is in language

■ Problems:
■ Which option to choose?
■ How many repetitions to make?

■ Answer: finite state automata
■ Should have seen in CS374

Regular Expressions

* 47

Implementing Regular Expressions

■ Regular expressions can be good for generating
strings in language

■ They are not so good for recognizing when a
string is in language

■ Problems:
■ Which option to choose?
■ How many repetitions to make?

■ Answer: finite state automata
■ Should have seen in CS374

Regular Expressions

* 48

Implementing Regular Expressions

■ Regular expressions can be good for generating
strings in language

■ They are not so good for recognizing when a
string is in language

■ Problems:
■ Which option to choose?
■ How many repetitions to make?

■ Answer: finite state automata
■ Should have seen in CS374

Regular Expressions

* 49

Example: Lexing

■ Regular expressions good for describing lexemes
(words) in a programming language
■ Identifier =

 (a ∨ … ∨ z ∨ A ∨ … ∨ Z)
 (a ∨ … ∨ z ∨ A ∨ … ∨ Z ∨ 0 ∨ … ∨ 9)*

■ Digit = (0 ∨ 1 ∨ … ∨ 9)
■ Number =

 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨
 ~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*

■ Keywords: if = if, while = while,…

Regular Expressions

* 50

Lexing

■ Different syntactic categories of “words”: tokens
■ Example:

■ Convert sequence of characters into sequence of
strings, integers, and floating point numbers

■ "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

■ Could write the regular expression, then translate
to DFA by hand, but this is a lot of work

■ Better: Write program to translate automatically
■ Lex is such a program (ocamllex for ocaml)

Regular Expressions

* 51

Lexing

■ Different syntactic categories of “words”: tokens
■ Example:

■ Convert sequence of characters into sequence of
strings, integers, and floating point numbers

■ "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

■ Could write the regular expression, then translate
to DFA by hand, but this is a lot of work

■ Better: Write program to translate automatically
■ Lex is such a program (ocamllex for ocaml)

Regular Expressions

52

 Lex

* 53

How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing
BufferRegexes Actions

Lex

* 54

How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing
BufferRegexes Actions

Lexer State
Machine

Lex

* 55

How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing
BufferRegexes Actions

Lexer State
Machine

Transitions

Lex

* 56

How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing
BufferRegexes Actions

Lexer State
Machine

Transitions

Accept

Lex

* 57

Ocamllex Mechanics

■ Put table of regular expressions and
corresponding actions (in OCaml) into a file:
 <filename>.mll

■ Call:
 ocamllex <filename>.mll

■ Produces OCaml code for a lexical analyzer in
 <filename>.ml

Lex

* 58

Sample Input

rule main = parse
| ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
 let newlexbuf = Lexing.from_channel stdin in
 main newlexbuf
}

Lex

* 59

Sample Input

rule main = parse
| ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
 let newlexbuf = Lexing.from_channel stdin in
 main newlexbuf
}

Lex

* 60

Sample Input

let digits = ['0'-'9']+
let chars = ['a'-'z']+
rule main = parse
| digits { print_string "Int\n"}
| digits'.'digits { print_string "Float\n"}
| chars { print_string "String\n"}
| _ { main lexbuf }
{
 let newlexbuf = Lexing.from_channel stdin in
 main newlexbuf
}

Lex

* 61

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

These contain arbitrary ocaml code
put at top and bottom of <filename>.ml

Lex

* 62

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

This introduces a variable ident
for use in later regular expressions

Lex

* 63

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

This introduces a variable ident
for use in later regular expressions

Lex

* 64

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

Each entrypoint corresponds to one
lexing function in<filename>.ml

Lex

* 65

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

The name of that lexing function
is the name given for entrypoint

Lex

* 66

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

Each becomes an OCaml function
that takes n+1 arguments …

Lex

* 67

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

The first n arguments are
those defined here explicitly.

Lex

* 68

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

Each argument arg1 ... argn
is available for use in action

Lex

* 69

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
| regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse
| ...
and ...
{ trailer }

The extra implicit last argument
has type Lexing.lexbuf

Lex

* 70

Ocamllex Regular Expression

■ Single quoted characters for letters: ‘a’
■ _: (underscore) matches any letter
■ Eof: special “end_of_file” marker
■ Concatenation same as usual
■ “string”: concatenation of sequence of characters
■ e1 | e2 : choice - what was e1 ∨ e2
■ [c1 - c2]: choice of any character between first

and second inclusive, as determined by character
codes

■ [^c1 - c2]: choice of any character NOT in set
Lex

* 71

Ocamllex Regular Expression

■ e*: same as before
■ e+: same as e e*
■ e?: option - was e ∨ ε
■ e1 # e2: the characters in e1 but not in e2; e1 and

e2 must describe just sets of characters
■ ident: abbreviation for earlier reg exp in let ident

= regexp
■ e1 as id: binds the result of e1 to id to be used in

the associated action

Lex

* 72

Ocamllex Manual

More details can be found at:
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

Lex

https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

* 73

Example : test.mll

{
 (* header *)
 type result = Int of int | Float of float | String of string
}
(* variables for reference in later regular expressions *)
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter + Lex

* 74

Example : test.mll

{
 (* header *)
 type result = Int of int | Float of float | String of string
}
(* variables for reference in later regular expressions *)
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter + Lex

* 75

Example : test.mll

rule main = parse (* entrypoint called “main” *)
 | (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 {
 (* trailer *)
 let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf
 } Lex

* 76

Example : test.mll

rule main = parse (* entrypoint called “main” *)
 | (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 {
 (* trailer *)
 let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf
 } Lex

* 77

Example : test.mll

rule main = parse (* entrypoint called “main” *)
 | (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 {
 (* trailer *)
 let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf
 } Lex

* 78

Example : test.mll

rule main = parse (* entrypoint called “main” *)
 | (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 {
 (* trailer *)
 let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf
 } Lex

* 79

Example : test.mll

rule main = parse (* entrypoint called “main” *)
 | (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 {
 (* trailer *)
 let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf
 } Lex

* 80

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi
- : result = String "hi”

Lex

* 81

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi
- : result = String "hi”

Lex

* 82

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

Lex

* 83

Example : using generated file

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
 Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

What happened to the rest?

Lex

* 84

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

Lex

* 85

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

Lex

* 86

Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

Lex

87

 Questions so far?

Your Turn

■ Work on MP8
■ Add a few keywords
■ Implement booleans and unit
■ Implement Ints and Floats
■ Implement identifiers

* 88

89

 Questions?

Next Class

90

■ EC2 is up
■ Quiz 4 on MP7 is Tuesday
■ Please show up!
■ Extra chance for ADT midterm question!

■ WA7 due next Thursday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

