+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

ﬁ Objectives for Today

m We want to turn strings (code) into computer
Instructions

m Done in phases

m Turn strings into abstract syntax trees (parse)

m Translate abstract syntax trees into executable
instructions (interpret or compile)

m Today we will learn the first step of parsing, which
is lexing those raw input strings into tokens

! Questions from last week?

* Meta-discourse

m Language Syntax and Semantics

m Syntax: form
m Regular Expressions, DFSAs and NDFSAs
m Grammars

Syntax

* Meta-discourse

m Language Syntax and Semantics
m Syntax: form
m Regular Expressions, DFSAs and NDFSAs
m Grammars
= Semantics: meaning
m Natural Semantics
m Transition Semantics

Syntax

ﬁ Meta-discourse

m Language Syntax and Semantics
m Syntax: form
m Regular Expressions, DFSAs and NDFSAs
m Grammars
= Semantics: meaning
m Natural Semantics
m Transition Semantics

m Compilers and interpreters (when correctly
implemented) map from the syntax of programs
(as written) to their semantics (as executed)

Syntax

7

* Meta-discourse

1+2 (Syntax |
Constant Binary Operator Constant

Syntax

* Meta-discourse

1+2 (Syntax |
Constant Binary Operator Constant
1+2=3 | Semantics |

Syntax

* Meta-discourse

1% 2 (Syntax |
Constant Binary Operator Constant
1*2=3 [(Bizarre)]
Semantics

Syntax

10

* Meta-discourse

1 + dinosaur @ntax]

l

Constant Binary Operator Constant

1 + dinosaur = 3 [(Bizarre)]
Semantics

Syntax

11

* Meta-discourse

1+2 (Syntax |
Constant Binary Operator Constant
1+2=3 | Semantics |

Syntax

12

* Language Syntax

1+2 (Syntax |
Constant Binary Operator Constant

Syntax

13

* Language Syntax

m Syntax describe which strings of symbols are
meaningful expressions in a language

m It takes more than syntax to understand a
language; need meaning (semantics) too

m Syntax is the entry point

Syntax

14

! Questions so far?

15

16

* Lexing and Parsing

m Converting strings (representing programs) to
abstract syntax trees done in two phases:

Lexing -

ﬁ Lexing and Parsing

m Converting strings (representing programs) to
abstract syntax trees done in two phases:

m Lexing: Converting strings (or streams of
characters) into lists/streams of tokens (the
*words” of the language)

m Specification Technique: Regular Expressions

Lexing N

* Lexing and Parsing

m Converting strings (representing programs) to
abstract syntax trees done in two phases:

m Lexing: Converting strings (or streams of
characters) into lists/streams of tokens (the
*words” of the language)

m Specification Technique: Regular Expressions

m Parsing: Convert lists/streams of tokens into
abstract syntax trees

m Specification Technique: BNF Grammars

Lexing N

Lexing and Parsing

Source Program

Lexer

l

Tokens

Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

Lexing .

Lexing and Parsing

SourcelProgram\

Lexer

l

Tokens

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

Lexing N

Lexing and Parsing

Source Program h

Lexer

l

\ Toklens y
Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

To lex our source program
and get tokens, we need

regular expressions,

automata, and a specific

kind of grammar.

Lexing .

Lexing and Parsing

Source Program h

Lexer

l

\ Toklens y
Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

To lex our source program
and get tokens, we need
regular expressions,
automata, and a specific
kind of grammar.

Tokens just tell us what

category each part of the
input falls into.

Lexing .

* Lexing and Parsing

1+2 (Syntax |
Constant Binary Operator Constant

Tokens just tell us what
category each part of the
input falls into.

Lexing N

_

Lexing and Parsing

Source Program h

Lexer

l

Tok|ens y

)
Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

To lex our source program
and get tokens, we need
&g'j:ular expressions)
automata, and a specific
kind of grammar.

Tokens just tell us what
category each part of the
input falls into.

Lexing .

! Regular Expressions

26

* Regular Expressions - Review

m Start with given character set (alphabet):
m For example, {a, b, c, ... }

Regular Expressions .

i Regular Expressions - Review

m Start with given character set (alphabet):
m For example, {a, b, c, ... }

m Empty Set:
m L(@)=A}

Regular Expressions .

* Regular Expressions - Review

m Start with given character set (alphabet):
m For example, {a, b, c, ... }

m Empty Set:
m L(®)={}

m Empty String:
= L(e) = {"}

Regular Expressions .

* Regular Expressions - Review

Start with given character set (alphabet):
m For example, {a, b, c, ... }

Empty Set:

m L(®)={}

Empty String:

= Le) = {™)

Literals: Each character is a regular expression

m Represents the set of one string containing just
that character

m [(a) ={a}

Regular Expressions 0

* Regular Expressions - Review

m If x and y are regular expressions, then their
concatenation Xxy is a regular expression

m Represents the set of strings made from first a
string described by x then a string described by y

m L(xy) = L(xX) x L(y). e.g., if L(x) = {a, ab} and
L(y) = {c, d}, then L(xy) = {ac, ad, abc, abd}

Regular Expressions .

* Regular Expressions - Review

m If x and y are regular expressions, then their
concatenation Xxy is a regular expression

m Represents the set of strings made from first a
string described by x then a string described by y
m L(xy) = L(xX) x L(y). e.g., if L(x) = {a, ab} and
L(y) = {c, d}, then L(xy) = {ac, ad, abc, abd}
m If x and y are regular expressions, then their
alternation x V y (sometimes x | y) is too

m Represents the set of strings described by x or y
m L[(x VY =LX) U L(xY).e.q., if L(x) = {a, ab}

and L(y) = {c, d}, then L(x V y) = {a, ab, c, d}

Regular Expressions "

i Regular Expressions - Review

m Grouping: If x is a regular expression, so is (x)
m Represents the same thing as x

Regular Expressions 33

* Regular Expressions - Review

m Grouping: If x is a regular expression, so is (x)
m Represents the same thing as x
m Repeat: If x is a regular expression, then so is x*

m It represents strings made from concatenating zero
or more strings from x

m L(x*) =L(e) U L(x) U (L(x) xL (x)) U ... e.q,
if L(x) = {q, ab}, then L(x*) = {", a, ab, aa, aab,
abab, ...}

Regular Expressions N

ﬁ Aside for Math Nerds

m On a given alphabet, these form a semiring:
m O is 0 (additive identity)
m £is 1 (multiplicative identity)
m X V yisx+y (addition)
m Xy is x -y (multiplication)
m If curious, try proving the semiring laws :)

Regular Expressions N

* Aside for Math Nerds

m On a given alphabet, these form a semiring:
m O is 0 (additive identity)
m £is 1 (multiplicative identity)
m X V yisx+y (addition)
m Xy is x -y (multiplication)
m If curious, try proving the semiring laws :)
m Special kind—a (star-continuous) Kleene algebra:
m The Kleene star x* can be viewed as the infinite
sum of powers of x (the closure)
m Furthermore, we have x + x = x (idempotence)
m Imposes a partial ordering and other goodies!

Regular Expressions y

* Example Regular Expressions

m (OV1)*1
m Set of all strings of 0s and 1s ending in 1
m {1,01,11,...}

Regular Expressions -

i Example Regular Expressions

m (OV1)*1
m Set of all strings of 0s and 1s ending in 1
m {1,01,11,...}
m a*b(a*)
m Set of all strings of as and bs with exactly one b

Regular Expressions .

i Example Regular Expressions

m (OV1)*1

m Set of all strings of 0s and 1s ending in 1

m {1,01,11,...}
m a*b(a*)

m Set of all strings of as and bs with exactly one b
= ((01) V(10))*

m You tell me

Regular Expressions o

* Example Regular Expressions

m (OV1)*1

m Set of all strings of 0s and 1s ending in 1

m {1,01,11,...}
m a*b(a¥*)

m Set of all strings of as and bs with exactly one b
= ((01) V(10))*

m You tell me

m Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

Regular Expressions .

! Questions so far?

Regular Expressions .

! Equivalently...

Regular Expressions

* Right Regular Grammars

m Subclass of BNF (covered in detail soon)

m Only rules of form
<nonterminal> ::= <terminal><nonterminal> or
<nonterminal> ::= <terminal> or
<nonterminal> ::= €

m Defines same class of languages as
regular expressions

m Important for writing lexers (programs that
convert strings of characters into strings of tokens)

m Connection to nondeterministic finite state
automata: nonterminals = states; rule = edge

Regular Expressions

43

* Example

m Right regular grammar:

<Ba
<Ba
<Ba

danced
dNCeC

dNCeC

> 1= €
> := 0<OneAndMore>
> i= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

Regular Expressions

44

* Example

m Right regular grammar:

<Ba
<Ba
<Ba

danced
dNCeC

danced

> 1= €
> := 0<OneAndMore>
> i= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

m Generates even length strings where every
initial substring of even length has same
number of 0s as 1s

Regular Expressions

45

* Implementing Regular Expressions

m Regular expressions can be good for generating
strings in language

m They are not so good for recognizing when a
string is in language

Regular Expressions .

* Implementing Regular Expressions

m Regular expressions can be good for generating
strings in language

m They are not so good for recognizing when a
string is in language

m Problems:
m Which option to choose?
m How many repetitions to make?

Regular Expressions .

* Implementing Regular Expressions

Regular expressions can be good for generating
strings in language

They are not so good for recognizing when a
string is in language

Problems:

m Which option to choose?

m How many repetitions to make?
Answer: finite state automata
Should have seen in CS374

Regular Expressions .

* Example: Lexing

m Regular expressions good for describing lexemes
(words) in a programming language
m Identifier =
@V.VzVAV. VI
@V ..VzVAV ..VZVOV.. VI9*
m Digit=(0V1V..V9)
= Number =

OV (1V .. V90V ..V9*V
~ (V. V90V .V 9)F

m Keywords: if = if, while = while,...

Regular Expressions .

Lexing

m Different syntactic categories of “"words”: tokens
s Example:

m Convert sequence of characters into sequence of
strings, integers, and floating point numbers

m "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

Regular Expressions -

Lexing

m Different syntactic categories of “"words”: tokens
s Example:

m Convert sequence of characters into sequence of
strings, integers, and floating point numbers

m "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]
m Could write the regular expression, then translate
to DFA by hand, but this is a lot of work

m Better: Write program to translate automatically
m Lex is such a program (ocamllex for ocaml)

Regular Expressions n

52

* How to Lex

m To lex, we need:
m A way to identify input strings (a lexing buffer)
m A set of regular expressions to match against
m A corresponding set of actions to take

Lexing -
[Regexes] [Buffer] [Actions]

Lex
53

* How to Lex

m To lex, we need:
m A way to identify input strings (a lexing buffer)
m A set of regular expressions to match against
m A corresponding set of actions to take

Regexes [Lexing] [Actions]

Buffer

Lexer] >tate
) Machine

Lex

54

* How to Lex

m To lex, we need:
m A way to identify input strings (a lexing buffer)
m A set of regular expressions to match against
m A corresponding set of actions to take

[Actions]

Transitions

Regexes

Lexing
Buffer

State
Machine

Lexer

;4

Lex

* How to Lex

m To lex, we need:
m A way to identify input strings (a lexing buffer)
m A set of regular expressions to match against
m A corresponding set of actions to take

Regexes [Actions

Lexing
Buffer

Transitions

Lexer

;4

Machine |Accept

Lex

* Ocamllex Mechanics

m Put table of regular expressions and
corresponding actions (in OCaml) into a file:
<filename>.mll|

m Call:
ocamllex <filename>.mll

m Produces OCaml code for a lexical analyzer in
<filename>.ml

Lex
57

* Sample Input

rule main = parse

'0'-'9']+ { print_string "Int\n"}
'0'-'9']+"'T'0'-'9"]+ { print_string "Float\n"}
'a'-'z']+ { print_string "String\n"}

_{ main lexbuf }

{

let newlexbuf = Lexing.from_channel stdin in
main newlexbuf

h

Lex

58

* Sample Input

rule main = parse

['0"-"9']+ { print_string "Int\n"}
['0'-'9"]+".'['0"-"9"]+ { print_string "Float\n"}
['a’-"'2"]+ { print_string "String\n"}

_{ main lexbuf }

{

let newlexbuf = Lexing.from_channel stdin in
main newlexbuf

h

Lex

59

* Sample Input

let digits = ['0'-'9']+
let chars = ['a'-'Z']+
rule main = parse

digits { print_string "Int\n"}
digits'.'digits { print_string "Float\n"}
chars { print_string "String\n"}

_ { main lexbuf }

{

let newlexbuf = Lexing.from_channel stdin in
main newlexbuf

h

Lex
60

* General Input

{| header|}

é)
These contain arbitrary ocaml code

put at top and bottom of <filename>.ml
g

J

{ trailer}

Lex
61

* General Input

{ header }

| let ident =

regexp ... |

(

This introduces a variable ident

{ trailer }

\for use in later regular expressions

N

J

Lex

62

* General Input

{ header }

| let ident =

regexp ... |

| regexp

| regexp

(

This introduces a variable ident

{ trailer }

\for use in later regular expressions

N

J

Lex

63

* General Input

{ header }
let ident = regexp ...
| rule entrypoint | = parse
regexp
regexp
| and entrypoint | = parse
-)
| d Each entrypoint corresponds to one
and ... lexing function in<filename>.ml
{ trailer } - g

Lex

* General Input

{ header }
let ident = regexp ...
| rule entrypoint | = parse
regexp
regexp
| and entrypoint | = parse
EEE (N
| The name of that lexing function
and ... is the name given for entrypoint
{ trailer } - J

Lex

65

* General Input

{ header }

let ident = regexp ...

| rule entrypoint | = parse

regexp

regexp

| and entrypoint | = parse

| ...
and ...
{ trailer }

(

Each becomes an OCaml function

\that takes n+1 arguments ...

N

J

Lex

66

* General Input

{ header }
let ident =

regexp ...

rule entrypoint|[argl... argn] = parse

regexp

regexp

and entrypoint|[arg1... argn]|= parse

| ...
and ...
{ trailer }

()

The first n arguments are

\those defined here explicitly.)

Lex

67

* General Input

{ header }
let ident =

regexp ...

rule entrypoint|[argl... argn] = parse

regexp {

action |}

regexp {| action |}

and entrypoint|[arg1... argn]|= parse

| ...
and ...
{ trailer }

(

Each argument argl ... argn

\is available for use in action

N

J

Lex

68

* General Input

{ header }
let ident =

regexp ...

rule entrypoint [argl... argn] = parse

regexp {

regexp {

action }

action }

and entrypoint [argl... argn] = parse

| ...
and ...
{ trailer }

(

The extra implicit last argument

\has type Lexing.lexbuf

N

J

Lex

69

* Ocamllex Regular Expression

Single quoted characters for letters: 'a’

_: (underscore) matches any letter

Eof: special “end_of_file” marker

Concatenation same as usual

“string”: concatenation of sequence of characters
e, | e,: choice - what was e, V e,

[c, - ¢,]: choice of any character between first
and second inclusive, as determined by character
codes

m [~C, - C,]: choice of any character NOT in set

Lex
* 70

* Ocamllex Regular Expression

e*: same

as before

e+: same as e e*
e?: option - was e \V €

el# e, t
e, must @

ne characters in e, but notine; e, and
escribe just sets of characters

ident: ab
= regexp

previation for earlier reg exp in let ident

€,as id: binds the result of e, to id to be used in
the associated action

Lex
71

* Ocamllex Manual

More details can be found at:
https://v2.ocaml.org/releases/4.14/htmiman/lexyacc.html

Lex

https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

* Example : test.mll

{

type result = Int of int | Float of float | String of string
h

Lex
73

* Example : test.mll

{

type result = Int of int | Float of float | String of string
h

et digit = ['0'-'9']

et digits = digit +

et lower_case = ['a'-'Z']

et upper_case = ['A'-'Z']

et letter = upper_case | lower_case

et letters = letter +

Lex
74

* Example : test.mll

rule main = parse

(digits)'.'digits as f { Float (float_of_string f) }
digits as n { Int (int_of_string n) }
letters as s { String s}

{ main lexbuf }

Lex
75

* Example : test.mll

rule main = parse

(digits)'.'digits as f { Float (float_of_string f) }
digits as n { Int (int_of_string n) }
letters as s { String s}

{ main lexbuf }

Lex
76

* Example : test.mll

rule main = parse

(digits)'.'digits as f { Float (float_of_string f) }
digits as n { Int (int_of_string n) }
letters as s { String s}

{ main lexbuf }

Lex
77

* Example : test.mll

rule main = parse

(digits)'.'digits as f { Float (float_of_string f) }
digits as n { Int (int_of_string n) }
letters as s { String s}

{ main lexbuf }

Lex
78

* Example : test.mll

rule main = parse

(digits)'.'digits as f { Float (float_of_string f) }
digits as n { Int (int_of_string n) }
letters as s { String s}

{ main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in
print_newline ();

main newlexbuf
3 Lex

79

* Example : using generated file

#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
Lexing.lexbuf -> int -> result = <fun>

Lex
80

* Example : using generated file

#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex _main_rec :
Lexing.lexbuf -> int -> result = <fun>
hi
- : result = String "hi”

Lex
81

* Example : using generated file

#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex _main_rec :
Lexing.lexbuf -> int -> result = <fun>

hi there 234 5.2
- : result = String "hi”

Lex
82

* Example : using generated file

#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex _main_rec :
Lexing.lexbuf -> int -> result = <fun>

hi there 234 5.2
- : result = String "hi”

What happened to the rest?

Lex
83

* Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;

hi 673 there

- : result = String "hi"

Recall the hidden argument of type lexbuf

Lex

84

* Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;

hi 673 there

- : result = String "hi"

main b;;

- 1 result = Int 673

Recall the hidden argument of type lexbuf

Lex

85

* Example : using generated file

let b = Lexing.from_channel stdin;;
main b;;

hi 673 there

- : result = String "hi"

main b;;

- 1 result = Int 673

main b;;

- : result = String "there"

Recall the hidden argument of type lexbuf

Lex

86

! Questions so far?

87

* Your Turn

m Work on MP8
m Add a few keywords
m Implement booleans and unit
m Implement Ints and Floats
m Implement identifiers

88

{ Questions?

89

ﬁ Next Class

m EC2isup
m Quiz 4 on MP7 is Tuesday
m Please show up!

m Extra chance for ADT midterm question!
m WA7 due next Thursday

m All deadlines can be found on course website
m Use office hours and class forums for help

90

