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Objectives for Today

■ We want to turn strings (code) into computer 
instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable 

instructions (interpret or compile)
■ Today we will learn the first step of parsing, which 

is lexing those raw input strings into tokens
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    Questions from last week?
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    Syntax
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Meta-discourse

■ Language Syntax and Semantics
■ Syntax: form
■ Regular Expressions, DFSAs and NDFSAs
■ Grammars   

■ Semantics: meaning
■ Natural Semantics
■ Transition Semantics

■ Compilers and interpreters (when correctly 
implemented) map from the syntax of programs 
(as written) to their semantics (as executed)

            Syntax
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Meta-discourse

1 + 2

                            1 + 2 = 3

Constant ConstantBinary Operator

Syntax

Semantics
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Meta-discourse

1 * 2

                            1 * 2 = 3

Constant ConstantBinary Operator
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Semantics
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Meta-discourse

1 + dinosaur

                           1 + dinosaur = 3

Constant ConstantBinary Operator

Syntax

(Bizarre)
Semantics
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Meta-discourse

1 + 2

                            1 + 2 = 3

Constant ConstantBinary Operator
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Language Syntax

1 + 2

Constant ConstantBinary Operator

Syntax

            Syntax
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Language Syntax

■ Syntax describe which strings of symbols are 
meaningful expressions in a language

■ It takes more than syntax to understand a 
language; need meaning (semantics) too

■ Syntax is the entry point

            Syntax
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    Questions so far?
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    Lexing
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Lexing and Parsing

■ Converting strings (representing programs) to 
abstract syntax trees done in two phases:
■ Lexing: Converting strings (or streams of 

characters) into lists/streams of tokens (the 
“words” of the language)
■ Specification Technique: Regular Expressions

■ Parsing: Convert lists/streams of tokens into 
abstract syntax trees
■ Specification Technique: BNF Grammars

             Lexing
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To lex our source program 
and get tokens, we need
regular expressions, 
automata, and a specific 
kind of grammar. 
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    Regular Expressions
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Regular Expressions - Review

■ Start with given character set (alphabet):
■ For example, {a, b, c, … }

■ Empty Set:
■ L(Φ) = { }

■ Empty String:
■ L(ε) = {“”}

■ Literals: Each character is a regular expression
■ Represents the set of one string containing just 

that character
■ L(a) = {a}

Regular Expressions
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Regular Expressions - Review

■ If x and y are regular expressions, then their 
concatenation xy is a regular expression
■ Represents the set of strings made from first a 

string described by x then a string described by y
■ L(xy) = L(x) ⨯ L(y). e.g., if L(x) = {a, ab} and 

L(y) = {c, d}, then L(xy) = {ac, ad, abc, abd}
■ If x and y are regular expressions, then their 

alternation x ∨ y (sometimes x | y) is too
■ Represents the set of strings described by x or y
■ L(x ∨ y) = L(x) ∪ L(y). e.g., if L(x) = {a, ab} 

and L(y) = {c, d}, then L(x ∨ y) = {a, ab, c, d}
Regular Expressions
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Regular Expressions - Review

■ Grouping: If x is a regular expression, so is (x)
■ Represents the same thing as x

■ Repeat: If x is a regular expression, then so is x*
■ It represents strings made from concatenating zero 

or more strings from x
■ L(x*) = L(ε) ∪ L(x) ∪ (L(x) ⨯ L (x)) ∪ … e.g.,

if L(x) = {a, ab}, then L(x*) = {“”, a, ab, aa, aab, 
abab, …}

Regular Expressions
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Regular Expressions - Review

■ Grouping: If x is a regular expression, so is (x)
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Aside for Math Nerds

■ On a given alphabet, these form a semiring:
■ Φ is 0 (additive identity)
■ ε is 1 (multiplicative identity)
■ x ∨ y is x + y (addition)
■ xy is x ⋅ y (multiplication)
■ If curious, try proving the semiring laws :)

■ Special kind—a (star-continuous) Kleene algebra:
■ The Kleene star x* can be viewed as the infinite 

sum of powers of x (the closure)
■ Furthermore, we have x + x = x (idempotence)
■ Imposes a partial ordering and other goodies!

■ Regular Expressions
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Example Regular Expressions

■ (0∨1)*1
■ Set of all strings of 0s and 1s ending in 1
■ {1, 01, 11,…}

■ a*b(a*)
■ Set of all strings of as and bs with exactly one b

■ ((01) ∨(10))*
■ You tell me

■ Regular expressions (equivalently, regular 
grammars) important for lexing, breaking strings 
into recognized words

Regular Expressions
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    Questions so far?

Regular Expressions
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    Equivalently…

Regular Expressions
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Right Regular Grammars

■ Subclass of BNF (covered in detail soon)
■ Only rules of form 

<nonterminal> ::= <terminal><nonterminal> or 
<nonterminal> ::= <terminal> or
<nonterminal> ::= ε

■ Defines same class of languages as 
regular expressions

■ Important for writing lexers (programs that 
convert strings of characters into strings of tokens)

■ Connection to nondeterministic finite state 
automata: nonterminals = states; rule = edge~ ~

Regular Expressions
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Example

■ Right regular grammar: 
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

■ Generates even length strings where every 
initial substring of even length has same 
number of 0s as 1s

Regular Expressions
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Implementing Regular Expressions

■ Regular expressions can be good for generating 
strings in language

■ They are not so good for recognizing when a 
string is in language

■ Problems:
■ Which option to choose?
■ How many repetitions to make?

■ Answer: finite state automata
■ Should have seen in CS374

Regular Expressions
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Example: Lexing

■ Regular expressions good for describing lexemes 
(words) in a programming language
■ Identifier =

  (a ∨ … ∨ z ∨ A ∨ … ∨ Z)
  (a ∨ … ∨ z ∨ A ∨ … ∨ Z ∨ 0 ∨ … ∨ 9)*

■ Digit = (0 ∨ 1 ∨ … ∨ 9)
■ Number =

  0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨        
  ~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*

■ Keywords: if = if, while = while,…

Regular Expressions
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Lexing

■ Different syntactic categories of “words”: tokens
■ Example:

■ Convert sequence of characters into sequence of 
strings, integers, and floating point numbers

■ "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

■ Could write the regular expression, then translate 
to DFA by hand, but this is a lot of work

■ Better: Write program to translate automatically
■ Lex is such a program (ocamllex for ocaml)

Regular Expressions
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    Lex
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How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing 
BufferRegexes Actions

Lex
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How to Lex

■ To lex, we need:
■ A way to identify input strings (a lexing buffer)
■ A set of regular expressions to match against
■ A corresponding set of actions to take

Lexing 
BufferRegexes Actions

Lexer State 
Machine

Transitions

Accept

Lex
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Ocamllex Mechanics

■ Put table of regular expressions and 
corresponding actions (in OCaml) into a file:
  <filename>.mll

■ Call:
  ocamllex <filename>.mll

■ Produces OCaml code for a lexical analyzer in
  <filename>.ml

Lex
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Sample Input

rule main = parse
| ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
  let newlexbuf = Lexing.from_channel stdin in
  main newlexbuf
} 

Lex
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Sample Input

rule main = parse
| ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
  let newlexbuf = Lexing.from_channel stdin in
  main newlexbuf
} 

Lex
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Sample Input

let digits = ['0'-'9']+
let chars = ['a'-'z']+ 
rule main = parse
| digits { print_string "Int\n"}
| digits'.'digits { print_string "Float\n"}
| chars { print_string "String\n"}
| _ { main lexbuf }
{
  let newlexbuf = Lexing.from_channel stdin in
  main newlexbuf
} 

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] =  parse 
| ... 
and ...
{ trailer }

These contain arbitrary ocaml code 
put at top and bottom of <filename>.ml

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] =  parse 
| ... 
and ...
{ trailer }

This introduces a variable ident 
for use in later regular expressions

Lex



* 63

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] =  parse 
| ... 
and ...
{ trailer }

This introduces a variable ident 
for use in later regular expressions

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

Each entrypoint corresponds to one 
lexing function in<filename>.ml 

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

The name of that lexing function 
is the name given for entrypoint

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

Each becomes an OCaml function 
that takes n+1 arguments …

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

The first n arguments are 
those defined here explicitly.

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

Each argument arg1 ... argn 
is available for use in action

Lex
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General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse    
| regexp { action } 
| ... 
| regexp { action }
and entrypoint [arg1... argn] = parse 
| ... 
and ...
{ trailer }

The extra implicit last argument 
has type Lexing.lexbuf

Lex
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Ocamllex Regular Expression

■ Single quoted characters for letters: ‘a’
■ _: (underscore) matches any letter
■ Eof: special “end_of_file” marker
■ Concatenation same as usual
■ “string”: concatenation of sequence of characters
■ e1 | e2 : choice - what was e1 ∨ e2
■ [c1 - c2]: choice of any character between first 

and second inclusive, as determined by character 
codes

■ [^c1 - c2]: choice of any character NOT in set
Lex
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Ocamllex Regular Expression

■ e*: same as before
■ e+: same as e e*
■ e?: option - was e  ∨ ε
■ e1 # e2: the characters in e1 but not in e2;   e1 and 

e2 must describe just sets of characters
■ ident: abbreviation for earlier reg exp in let ident 

= regexp 
■ e1 as id: binds the result of e1 to id to be used in 

the associated action

Lex
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Ocamllex Manual

More details can be found at:
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

Lex

https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html
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Example : test.mll

{
  (* header *)
  type result = Int of int | Float of float | String of string
}
(* variables for reference in later regular expressions *)
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter + Lex
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Example : test.mll

{
  (* header *)
  type result = Int of int | Float of float | String of string
}
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let letters = letter + Lex
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Example : test.mll

rule main = parse    (* entrypoint called “main” *)
 | (digits)'.'digits as f  { Float (float_of_string f) }
 | digits as n              { Int (int_of_string n) }
 | letters as s             { String s}
 | _                           { main lexbuf }
 { 
   (* trailer *)
   let newlexbuf = (Lexing.from_channel stdin) in
   print_newline ();
   main newlexbuf
 } Lex
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Example : test.mll
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Example : test.mll
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Example : test.mll

rule main = parse    (* entrypoint called “main” *)
 | (digits)'.'digits as f  { Float (float_of_string f) }
 | digits as n              { Int (int_of_string n) }
 | letters as s             { String s}
 | _                           { main lexbuf }
 { 
   (* trailer *)
   let newlexbuf = (Lexing.from_channel stdin) in
   print_newline ();
   main newlexbuf
 } Lex
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi
- : result = String "hi”

Lex
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi
- : result = String "hi”

Lex
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

Lex
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Example : using generated file

# #use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec :
  Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
- : result = String "hi”

What happened to the rest?

Lex



* 84

Example : using generated file

# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

Lex
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Example : using generated file

# let b = Lexing.from_channel stdin;;
# main b;;
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Lex
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Example : using generated file

# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"

Recall the hidden argument of type lexbuf

Lex
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    Questions so far?



Your Turn

■ Work on MP8
■ Add a few keywords
■ Implement booleans and unit
■ Implement Ints and Floats
■ Implement identifiers

* 88
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    Questions?



Next Class

90

■ EC2 is up
■ Quiz 4 on MP7 is Tuesday 
■ Please show up!
■ Extra chance for ADT midterm question!

■ WA7 due next Thursday
■ All deadlines can be found on course website
■ Use office hours and class forums for help


