

Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Midterm Post on Piazza

- Last week, we covered type inference
- There were a number of places where we mentioned unification, but we abstracted over how it actually works
- This week, we'll explain how unification works

Questions from last week?

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the **unification problem**) does there exist a substitution σ (the **unification solution**) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the unification problem) does there exist a

substitution o (the unification solution) of terms

for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Substituting a term t' for a variable x inside of another term t is often written t [t' / x]. For example, (y + 2)[3 / y] is 3 + 2.

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```



```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```



```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```



```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 | Var name ->
    if var name = name then residue else term
 | Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 Var name \rightarrow (* x [t' / x] is t' *)
    if var name = name then residue else term
 | Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 Var name -> (* x [t' / x] is t'; y [t' / x] is y *)
    if var name = name then residue else term
 | Const (c, tys) ->
    Const (c, List.map (subst var name residue) tys)
```

```
type term = Var of string | Const of (string * term list)
let x = Var "'a" (* example variable *)
let tm = Const ("2",[]) (* example constructor *)
let rec subst var_name residue term = (* t [t' / x] *)
 match term with
 Var name -> (* x [t' / x] is t'; y [t' / x] is y *)
    if var name = name then residue else term
 | Const (c, tys) -> (* c(x, ...)[t' / x] = c(x [t' / x], ... *)
    Const (c, List.map (subst var_name residue) tys)
```

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the **unification problem**) does there exist a substitution σ (the **unification solution**) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

Uses for Unification

- Type inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic programming (e.g., Prolog)
- Simple parsing
- With fancy types: used in proof synthesis/repair

Questions so far?

Algorithm Overview

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' \rightarrow$

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$ Four main steps:
 - Delete
 - Decompose
 - Orient
 - Eliminate

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$

Four main steps

- Delete
- Decompose
- Orient
- Eliminate

For nonempty S written

$$\{(s_1 = t_1), ..., (s_n = t_n)\},\$$

choose a pair $(s_i = t_i)$. Then we can write S as

$$\{s_i = t_i\} \cup (\{(s_1 = t_1), ..., (s_n = t_n)\} - (s_i = t_i)).$$

Let (s, t) be (s_i, t_i), and let S' be

$$\{(s_1 = t_1), ..., (s_n = t_n)\} - (s_i = t_i).$$

Then $S = \{(s, t)\} \cup S'$.

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$

Four main steps

- Delete
- Decompose
- Orient
- Eliminate

For nonempty S written

$$\{(s_1 = t_1), ..., (s_n = t_n)\},\$$

choose a pair $(s_i = t_i)$. Then we can write S as

$$\{s_i = t_i\} \cup (\{(s_1 = t_1), ..., (s_n = t_n)\} - (s_i = t_i)).$$

Let (s, t) be (s_i, t_i), and let S' be

$$\{(s_1 = t_1), ..., (s_n = t_n)\} - (s_i = t_i).$$

Then $S = \{(s, t)\} \cup S'$.

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$ Four main steps:
 - Delete
 - Decompose
 - Orient
 - Eliminate

Let $S = \{(s_1 = t_1), ..., (s_n = t_n)\}$ be a unification problem. **Solve by cases:**

- Case S = { }: Unif(S) ->
 Identity function (i.e., no substitution).
- Case $S = \{(s, t)\} \cup S' ->$

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term), consider just S'
- Decompose: if s and t apply the same function to the same number of arguments, consider just the pairs of arguments

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Algorithm

Questions so far?

Will make this more formal later.

But first, an example.

x, y, z variables, f, g constructors Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = ?$

x, y, z variables, f, g constructors Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = ?$

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

4

Example: Non-empty S

x, y, z variables, f, g constructors
Unify {(f(x) = f(g(f(z), y))), (g(y, y) = x)} = ?
Pick a pair: (g(y,y) = x)

4

Example: Non-empty S, Orient

```
x, y, z variables, f, g constructors
```

```
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = ?
```

- Pick a pair: (g(y,y) = x)
- Orient: (x = g(y,y))

Example: Non-empty S, Orient

x, y, z variables, f, g constructors Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =$ Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\}$ (Orient)

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =
```

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =

?
```

Pick a pair: (x = g(y,y))

E

Example: Non-empty S, Eliminate

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =
```

- Pick a pair: (x = g(y,y))
- **Eliminate** x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)

Example: Non-empty S, Eliminate

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
```

- Pick a pair: (x = g(y,y))
- **Eliminate** x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)

Example: Non-empty S, Eliminate

x, y, z variables, f, g constructors Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =$ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$ (Orient) = Unify $\{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\}$ (Elim)

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =
?
```

4

Example: Non-empty S

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =

Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} (Elim) =
```

Pick a pair: (f(g(y,y)) = f(g(f(z),y)))

Example: Non-empty S, Decompose

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =
?
```

- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:

```
(\mathbf{f}(g(y,y)) = \mathbf{f}(g(f(z),y))) becomes \{(g(y,y) = g(f(z),y))\}
```


Example: Non-empty S, Decompose

x, y, z variables, f, g constructors

Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =$ Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\}$ (Orient) =

Unify $\{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\}$ (Elim) =

Unify $\{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\}$ (Decomp)

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

?
```

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y,y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} (Decomp) =

?
```

Pick a pair: (g(y,y) = g(f(z),y))

Example: Non-empty S, Decompose

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y, y)) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

?
```

- Pick a pair: (g(y,y) = g(f(z),y))
- Decompose:

$$(\mathbf{g}(y,y) = \mathbf{g}(f(z),y))$$
 becomes $\{(y = f(z)); (y = y)\}$

Example: Non-empty S, Decompose

x, y, z variables, f, g constructors

Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} \text{ (Orient)} = Unify <math>\{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} = Unify <math>\{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} \text{ (Decomp)} = Unify <math>\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} \text{ (Decomp)}$

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =

Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} (Elim) =

Unify \{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} (Decomp) =

Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
```

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} (Decomp) =
?
```

Pick a pair: y = f(z)

Example: Non-empty S, Eliminate

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

?
```

- Pick a pair: y = f(z)
- **Eliminate** y with substitution $\{y \rightarrow f(z)\}$
 - Check: y not in f(z)

Example

Example: Non-empty S, Eliminate

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z), y))), (x = g(y, y))\} (Orient) =

Unify \{(f(g(y, y)) = f(g(f(z), y)))\} \circ \{x \rightarrow g(y, y)\} (Elim) =

Unify \{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} (Decomp) =

Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} (Decomp) =
```

- Pick a pair: y = f(z)
- Eliminate y with substitution {y→ f(z)}
 - Check: y not in f(z)

Example

4

Example: Non-empty S, Eliminate

```
x, y, z variables, f, g constructors

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =

Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =

Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} (Elim) =

Unify \{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} (Decomp) =

Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =

Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z),f(z))\} (Elim)
```

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Elim) =
```

x, y, z variables, f, g constructors Unify $\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =$ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =$ Unify $\{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =$ Unify $\{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\}$ (Decomp) = Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\}$ (Decomp) = Unify $\{(\mathbf{f}(\mathbf{z}) = \mathbf{f}(\mathbf{z}))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$ (Elim) =

Pick a pair: f(z) = f(z)

Example: Non-empty S, Delete

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(q(y,y) = q(f(z),y))\} \circ \{x \rightarrow q(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(\mathbf{f}(\mathbf{z}) = \mathbf{f}(\mathbf{z}))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}  (Elim) =
```

- Delete

Example: Non-empty S, Delete

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(q(y,y) = q(f(z),y))\} \circ \{x \rightarrow q(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(\mathbf{f}(\mathbf{z}) = \mathbf{f}(\mathbf{z}))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}  (Elim) =
Unify \{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Delete)
```

Example: Empty S

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(g(y,y) = g(f(z),y))\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Elim) =
Unify \{ \} \circ \{ y \rightarrow f(z); x \rightarrow g(f(z), f(z)) \} (Delete) =
```

Example: Empty S

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(q(y,y) = q(f(z),y))\} \circ \{x \rightarrow q(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Elim) =
Unify \{ \} \circ \{ y \rightarrow f(z); x \rightarrow g(f(z), f(z)) \} (Delete) =
\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Identity)
```

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\}\ (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(q(y,y) = q(f(z),y))\} \circ \{x \rightarrow q(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Elim) =
Unify \{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Delete) =
\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Identity)
```

x, y, z variables, f, g constructors

```
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} =
Unify \{(f(x) = f(g(f(z),y))), (x = g(y,y))\} (Orient) =
Unify \{(f(g(y,y)) = f(g(f(z),y)))\} \circ \{x \rightarrow g(y,y)\} \text{ (Elim)} =
Unify \{(q(y,y) = q(f(z),y))\} \circ \{x \rightarrow q(y,y)\} (Decomp) =
Unify \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} (Decomp) =
Unify \{(f(z) = f(z))\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Elim) =
Unify \{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Delete) =
\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} (Identity)
```

```
x, y, z variables, f, g constructors
Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}
```

x, y, z variables, f, g constructors

Unify
$$\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$$

From this, we can validate:

$$f(x) = f(g(f(z), y)) \rightarrow$$

$$f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

and:

$$g(y, y) = x \rightarrow$$

$$g(f(z), f(z)) = g(f(z), f(z))$$

x, y, z variables, f, g constructors

Unify
$$\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$$

From this, we can validate:

$$f(\mathbf{x}) = f(g(f(z), \mathbf{y})) \rightarrow$$

$$f(\mathbf{g}(f(z), f(z))) = f(g(f(z), f(z)))$$

and:

$$g(y, y) = x \rightarrow$$

$$g(f(z), f(z)) = g(f(z), f(z))$$

x, y, z variables, f, g constructors

Unify
$$\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$$

From this, we can validate:

$$f(x) = f(g(f(z), y)) \rightarrow$$

$$f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

and:

$$g(y, y) = x \rightarrow$$

$$g(f(z), f(z)) = g(f(z), f(z))$$

Example

x, y, z variables, f, g constructors

Unify
$$\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$$

From this, we can validate:

$$f(x) = f(g(f(z), y)) \rightarrow$$

$$f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

and:

$$g(y, y) = x \rightarrow$$

$$g(f(z), f(z)) = g(f(z), f(z))$$

Example

x, y, z variables, f, g constructors

Unify
$$\{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$$

From this, we can validate:

$$f(x) = f(g(f(z), y)) \rightarrow$$

$$f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

and:

$$g(y, y) = x \rightarrow$$

$$g(f(z), f(z)) = g(f(z), f(z))$$

Questions so far?

Example of Failure

```
Unify\{(f(x, g(x)) = f(h(x), x))\} =
Unify\{(x = h(x)), (g(x) = x)\} (Decomp) =
Unify\{(x = h(x)), (x = g(x))\} (Orient) =
```

Example of Failure: Occurs Check

```
Unify\{(f(x, g(x)) = f(h(x), x))\} =
Unify\{(x = h(x)), (g(x) = x)\} (Decomp) =
Unify\{(x = h(x)), (x = g(x))\} (Orient) =
?
```

No rules apply. x is in h(x), and x is in g(x).

Questions so far?

Algorithm, Revisited

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term), consider just S'
- Decompose: if s and t apply the same function to the same number of arguments, consider just the pairs of arguments

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term), consider just S'
- Decompose: if s and t apply the same function to the same number of arguments, consider just the pairs of arguments

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- Decompose: if s and t apply the same function to the same number of arguments, consider just the pairs of arguments

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- Decompose: if s and t apply the same function to the same number of arguments, consider just the pairs of arguments

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case $S = \{(s, t)\} \cup S' ->$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- **Decompose:** if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ then Unif(S) = Unif({(q₁, r₁), ..., (q_m, r_m)} \cup S')

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- **Decompose:** if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ then Unif(S) = Unif({(q₁, r₁), ..., (q_m, r_m)} \cup S')

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, flip it so we get a variable on the LHS
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case $S = \{(s, t)\} \cup S' ->$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- **Decompose:** if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ then Unif(S) = Unif({(q₁, r₁), ..., (q_m, r_m)} \cup S')

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case
$$S = \{(s, t)\} \cup S' ->$$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- **Decompose:** if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ then Unif(S) = Unif({(q₁, r₁), ..., (q_m, r_m)} \cup S')

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')
- Eliminate: If we have a variable on the LHS not in the RHS, substitute

Case $S = \{(s, t)\} \cup S' ->$

- Delete: if s = t (same term) then Unif(S) = Unif(S')
- **Decompose:** if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ then Unif(S) = Unif({(q₁, r₁), ..., (q_m, r_m)} \cup S')

Four main steps:

- Delete
- Decompose
- Orient
- Eliminate

- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')
- Eliminate: If we have a variable on the LHS not in the RHS, needs own slide ...

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - $\blacksquare \text{ Let } \phi = \{x \to t\}$
 - Unif(S) = Unif(ϕ (S')) o {x \rightarrow t}
 - Let $\psi = \text{Unif}(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}$ o ψ
 - Note:

$$\{x \rightarrow a\} \text{ o } \{y \rightarrow b\} =$$

 $\{y \rightarrow (\{x \rightarrow a\}(b))\} \text{ o } \{x \rightarrow a\}$
if y not in a

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - $\blacksquare \text{ Let } \phi = \{x \to t\}$
 - Unif(S) = Unif($\phi(S')$) o $\{x \rightarrow t\}$
 - Let $\psi = \text{Unif}(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}$ o ψ
 - Note:

$$\{x \rightarrow a\} \text{ o } \{y \rightarrow b\} =$$

 $\{y \rightarrow (\{x \rightarrow a\}(b))\} \text{ o } \{x \rightarrow a\}$
if y not in a

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - $\blacksquare \text{ Let } \phi = \{x \to t\}$
 - Unif(S) = Unif($\phi(S')$) o $\{x \rightarrow t\}$
 - Let ψ = Unif($\phi(S')$)
 - Unif(S) = $\{x \rightarrow \psi(t)\}$ o ψ
 - Note:

$$\{x \rightarrow a\} \ o \ \{y \rightarrow b\} =$$

 $\{y \rightarrow (\{x \rightarrow a\}(b))\} \ o \ \{x \rightarrow a\}$
if y not in a

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - $\blacksquare \text{ Let } \phi = \{x \to t\}$
 - Unif(S) = Unif(ϕ (S')) o {x \rightarrow t}
 - Let $\psi = \text{Unif}(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}$ o ψ
 - Note:

$$\{x \rightarrow a\} \text{ o } \{y \rightarrow b\} =$$

 $\{y \rightarrow (\{x \rightarrow a\}(b))\} \text{ o } \{x \rightarrow a\}$
if y not in a

- Don't return substitution; rather, do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use
 mutable structures (or possibly lazy structures)
 - We won't discuss these

Questions?

What's Next

Three Main Topics

Ж

Three Main Topics

so far Ш New Language Language **Semantics Translation Programming** Paradigm

*

*

Language Translation

Language Translation

Every Interpreter Does This

Every Compiler Does This

Lower-Level Representation

Many Compilers Do This

Modified from "Modern Compiler Implementation in ML" by Andrew Appel

Many Compilers Do This

Modified from "Modern Compiler Implementation in ML" by Andrew Appel

Many Compilers Do This

Modified from "Modern Compiler Implementation in ML" by Andrew Appel

We Will Stay Here

Next Class

- EC2 will be up
- **WA6** due Thursday
- All deadlines can be found on course website
- Use office hours and class forums for help