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! Midterm Post on Piazza



* Objectives for Today

m Last week, we covered type inference

m There were a number of places where we
mentioned unification, but we abstracted over
how it actually works

m This week, we'll explain how unification works



! Questions from last week?



! Unification



* Unification Problem

Given a set of pairs of terms (“equations”)

sy 8 (s, 8), s (s, )}
(the unification problem) does there exist a
substitution o (the unification solution) of terms

for variables such that

o(s,) = o(t),
foralli=1, .., n?

Unification



* Unification Problem

Given a set of pairs of|terms|(“equations”)

sy, t), (s, 8), oy (S, T) )
(the unification problem) does there exist a
[substitution o](the unification solution) of terms
for variables such that

a(s,) = o(t),
foralli=1, .., n?

Unification



* Background for Unification

m Terms made from constructors and variables
(for the simple first order case)

Unification .
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* Background for Unification

m Terms made from constructors and variables
(for the simple first order case)

m Constructors may be applied to arguments (other
terms) to make new terms

m Variables and constructors with no arguments are
base cases

Unification
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ﬁ Background for Unification

m Terms made from constructors and variables
(for the simple first order case)

m Constructors may be applied to arguments (other
terms) to make new terms

m Variables and constructors with no arguments are
base cases

m Constructors applied to different number of
arguments (arity) considered different
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ﬁ Background for Unification

Terms made from constructors and variables
(for the simple first order case)

Constructors may be applied to arguments (other
terms) to make new terms

Variables and constructors with no arguments are
base cases

Constructors applied to different number of
arguments (arity) considered different

Substitution of terms for variables
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* Background for Unification

m Terms made from constructors and variables
(for the simple first order case)

m Constructors may be applied to arguments (other
terms) to make new terms

m Variables and constructors with no arguments are
base cases

m Constructors applied to different number of
arguments (arity) considered different

m Substitution of terms for variables

Substituting a term t’ for a variable x inside of another term t is
often written t [t" / x]. For example, (y + 2)[3 / y] is 3 + 2.

. Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var Ma”
let tm = Const (“2"[])

Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var name residue term =
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var name residue term =
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var_name residue term =
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var name residue term =

Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var _name residue term =
match term with
| Var name ->

| Const (c, tys) ->

Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var_name residue term =
match term with
| Var name ->
if var_name = name then residue
| Const (c, tys) ->

Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var _name residue term =
match term with
| Var name ->

if var_name = name then residue else term
| Const (c, tys) ->

Unification
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* Terms and Substitution

type term = Var of string | Const of (string * term list)
let x = Var "a”

let tm = Const (“2”[])

let rec subst var _name residue term =
match term with
| Var name ->

if var_name = name then residue else term
| Const (c, tys) ->

Const (c, List.map (subst var_name residue) tys)

Unification
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* Unification Problem

Given a set of pairs of terms (“equations”)
sy 8 (s, 8), s (s, €)}
(the unification problem) does there exist a
substitution o (the unification solution) of terms
for variables such that
a(s,) = o(t),
foralli=1, .., n?

Unification
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* Uses for Unification

m Type inference and type checking
m Pattern matching as in OCaml|
m Can use a simplified version of algorithm
m Logic programming (e.g., Prolog)
m Simple parsing
m With fancy types: used in proof synthesis/repair

Unification
24



! Questions so far?
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! Algorithm Overview
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:

Algorithm
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:

m CaseS ={1}:Unif(S) ->
Identity function (i.e., no substitution).

Algorithm
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:

m CaseS ={ }:Unif(S) ->
Identity function (i.e., no substitution).
m CaseS={(s,t)} US ->

Algorithm
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:
m CaseS ={1}:Unif(S) ->
Identity function (i.e., no substitution).
m CaseS={(s,t)} US ->
For nonempty S written \
{(5,= t)), o (5,= t)),

choose a pair (s.= t). Then we can write S as

{5=t3 U ({(s,=t,), o (5,= )} - (5= 1)).

\_ /
Algorithm
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:

m CaseS ={1}:Unif(S) ->
Identity function (i.e., no substitution).

m CaseS={(s,t)} US ->

For nonempty S written \
{(s,= ) s (5,= )},

choose a pair (s.= t). Then we can write S as
{s=t} U ({(5,= t,), .., (5,= t)} - (5= 1)).

Let (s, t) be (s, t), and let S’ be
{(Sl= tl)l ey (Sn= tn)} - (Si= t|)

Qhen S={(s, )} US. /

Algorithm
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* Unification Algorithm

Let S = {(s,=t,), ..., (s,= t_)} be a unification problem.
Solve by cases:

m CaseS ={ }:Unif(S) ->

Identity function (i.e., no substitution).
m CaseS={(s, )} US ->

Four main steps:

m Delete

m Decompose

m Orient

m Eliminate

Algorithm
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* Unification Algorithm

m CaseS={(s, )} US ->
/Four main stepsh
m Delete

m Decompose

m Orient

" Eliminate Y

Algorithm
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* Unification Algorithm

CaseS ={(s,t)} U S ->

m Delete: if s = t (same term), consider just S’

m Decompose: if s and t apply the same function to
the same number of arguments, consider just the
pairs of arguments

. m Orient: if t = x is a variable,

(Four main steps.\ and s is not a variable, flip it so

= Delete we get a variable on the LHS

m Decompose m Eliminate: If we have a

m Orient variable on the LHS not in the

= Eliminate y RHS, substitute
\ Algorithm
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! Questions so far?
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! Will make this more formal later.

36



! But first, an example.
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* Example

X, Y, z variables, f, g constructors

Unify 1(f(x) = 1(9(f(2), y))), (9(y, y) = x)} = ?

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify 1(f(x) = 1(9(f(2), y))), (9(y, y) = x)} = ?

/Four main steps)
m Delete

Decompose
Orient

\" Eliminate )

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors
Unify {(f(x) = f(a(f(z), y))), (a(y, y) = x)} =7
m Pick a pair: (g(y,y) = x)

Example
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* Example: Non-empty S, Orient

X, Y, z variables, f, g constructors
Unify {(f(x) = f(a(f(z), y))), (a(y, y) = x)} =7

m Pick a pair: (g(y,y) = x)
m Orient: (x = g(y,y))

Example
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* Example: Non-empty S, Orient

X, Y, z variables, f, g constructors

Unify 1(f(x) = 1(9(f(2), y))), (a(y, y) = x)} =
Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient)

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(2), ¥))). (a(y, ¥) = X)} =

Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =

?

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(2), ¥))). (a(y, ¥) = X)} =
Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =

?

m Pick a pair: (x = g(y,y))

Example
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* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(2), ¥))). (a(y, ¥) = X)} =
Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =

?

m Pick a pair: (x = g(y,y))
m Eliminate x with substitution {x— g(y,y)}
m Check: x notin g(y,y)

Example N



* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(2), ¥))). (a(y, ¥) = X)} =
Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =

?

m Pick a pair: (x = g(y,y))
m Eliminate x with substitution {x— g(y,y)?}
m Check: x notin g(y,y)

Example
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* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

=
S
=

nify {(f(x) = 1(g(f(2), y))), (9(y, y) = X)} =
nify {(f(x) = 1(g(f(2),y))), (x = g(y,y))’ (Orient) =
nify {(f(a(y,y)) = 1(9(f(2),y)))} o {x—g(y,y)} (Elim)

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (9(y, y) = X)} =

Unify {(f(x) = f(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(a(y,y)) = f(9(f(2),¥)))} o {x—9(y,y)} (Elim) =
?

Example
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* Example: Non-empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(g(f(2), y))), (a(y, ¥) = X)} =

nify {(f(x) = f(9(f(z),y))), (x = g(y,y))} (Orient) =
nify {(f(g(y,y)) = f(9(f(z),y)))} o {x—g(y,y)} (Elim) =

o
=
=
?

o

Pick a pair: (f(a(y,y)) = f(a(f(z),y)))

Example
49



* Example: Non-empty S, Decompose

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(g(y,y)) = f(g(f(2),y)))} o {x—a(y,y)} (Elim) =

?

m Pick a pair: (f(g(y,y)) = f(g9(f(z),y)))
m Decompose:
(F(a(y,y)) = £(g(f(z),y))) becomes
{aly,y) = a(f(2),y))}

Example -



* Example: Non-empty S, Decompose

X, Y, z variables, f, g constructors

=
S
=
=

nify {(f(x) = 1(g(f(2), ¥))), (9(y, y) = X)} =

nify {(f(x) = £(9(f(2),y))), (x = g(y,y))} (Orient) =
nify 1(f(g(y,y)) = f(9(f(2),¥)))} o {x—9(y,y)} (Elim) =
nify 1(9(y,y) = 9(f(2),y))} o 1x—g(y,y)} (Decomp)

Example n



* Example: Non-empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =

N ( C C C

Example -



* Example: Non-empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(g(y,y) = 9(f(z),y))} o {x—9(y,y)} (Decomp) =

B O c c ¢

Pick a pair: (g(y,y) = 9(f(z),y))

Example .



* Example: Non-empty S, Decompose

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(g(y,y) = 9(f(2),y))} o {x—a(y,y)} (Decomp) =

?

m Pick a pair: (g(y,y) = 9(f(z),y))
m Decompose:

(g(y,y) = 9(f(z),y)) becomes
{ly =1(2)); (y =vy)}

Example N



* Example: Non-empty S, Decompose

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(g(y,y) = 9(f(2),y))} o {x—a(y,y)} (Decomp) =
Unify {(y = 1(2)); (y = y)} o{X— g(y,y)} (Decomp)

Example .



* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =
?

nify {(y = 1(2)); (y = )1 o{x— g(y,y)} (Decomp) =

Example ,



* Example: Non-empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(z)); (y = y)J o{Xx— g(y,y)} (Decomp) =

O ~J C C C C

Pick a pair: y = f(z)

Example .



* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =
Unify {(y = £(2)); (y = y)}o{Xx— g(y,y)} (Decomp) =

?
m Pick a pair: y = f(z)
m Eliminate y with substitution {y— f(z)}

m Check: y not in f(z)

Example .



* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =
Unify {(y = f(2)); (y = ¥)}o{X— 9g(y,y)} (Decomp) =

?
m Pick a pair: y = f(z)
= Eliminate y with substitution {y— f(z)}

m Check: y not in f(z)

Example S



* Example: Non-empty S, Eliminate

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(2)); (y = y¥)}o{x— 9g(y,y)} (Decomp) =
nify {(f(z) =(2))} o {y—F(2); x—9(f(z),f(z))} (Elim)

=
S
=
=
S
=

Example o



* Example: Non-empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(2)); (y = y)} o{x— g(y,y)} (Decomp) =
nify {(f(z) = 1(2))} o {y—f(2); x—9(f(2),(2))} (Elim) =

N C C C C C

Example N



* Example: Non-empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =
Unify {(y = 1(2)); (y = y)}o{X— g(y,y)} (Decomp) =
Unify {(f(z) =(z))} o {y—f(2); x—9(f(2),f(2))} (Elim) =
?

Pick a pair: f(z) = f(z)

Example o



* Example: Non-empty S, Delete

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(2)); (y = y)} o{x— g(y,y)} (Decomp) =
nify {(f(z) = £(2))} o {y—f(2); x—9(f(2),f(z))} (Elim) =

=
S
=
=
S
=

?
m Pick a pair: f(z) = f(z)

m Delete

Example .



* Example: Non-empty S, Delete

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(2)); (y = y)} o{x— g(y,y)} (Decomp) =
nify {(f(z) = £(2))} o {y—f(2); x—9(f(2),f(z))} (Elim) =
nify {} o {y—1(2); x—9(f(2), 1(z))} (Delete)

C C C C C C C

Example N



* Example: Empty S

X, Y, z variables, f, g constructors

nify {(f(x) = f(a(f(2), y))), (9(y, y) = X)} =

nify {(f(x) = f(g(f(2),y))), (x = g(y,y))} (Orient) =
nify {(f(9(y,y)) = f(g(f(2),¥)))} o {x—g(y,y)} (Elim) =
nify {(a(y,y) = 9(f(2),y))} o {x—9(y,y)} (Decomp) =
nify {(y = f(2)); (y = y)} o{x— g(y,y)} (Decomp) =
nify {(f(z) = 1(2))} o {y—f(2); x—9(f(2),(2))} (Elim) =
nify {J o {y—f(2); x—g(f(z), f(z))} (Delete) =

"~ C C C C C C

Example .



* Example: Empty S

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =

nify {(y = 1(2)); (y = )1 o{x— g(y,y)} (Decomp) =
nify {(f(z) = 1(2))} o Ly—1(2); x—9(f(2),£(2)) } (Elim) =
nify {3 o {y—f(2); x—9(f(2), 1(2))} (Delete) =
1y—f(2); x—9(f(2), 1(z))} (Identity)

Example N



* Example

X, Y, z variables, f, g constructors

Unify {(f(x) = f(g(f(z), y))), (a(y, y) = x)} =

Unify {(f(x) = 1(9(f(2),y))), (x = g(y,y))} (Orient) =
Unify {(f(9(y,y)) = f(a(f(2),¥)))} o {x—a(y,y)} (Elim) =
Unify {(a(y,y) = 9(f(2),y))} o {x—g(y,y)} (Decomp) =

nify {(y = 1(2)); (y = )1 o{x— g(y,y)} (Decomp) =
nify {(f(z) = 1(2))} o Ly—1(2); x—9(f(2),£(2)) } (Elim) =
nify 1} o 1y—1(2); x—g(f(2), 1(2))} (Delete) =
1y—f(2); x—9(f(2), 1(z))} (Identity)
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* Example

X, Y, z variables, f, g constructors

Unify {(F(x) = f(a(f(z), ¥))), (9(y, ¥) = X)} =
{y—f(2); x—9(f(2), f(2))}

From this, we can validate:
f(x) = f(g(f(z), y)) —
f(9(f(2), f(2))) = f(g(f(2), f(2)))

Example
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! Questions so far?

Example .



* Example of Failure

nify{(f(x, g(x)) = f(h(x), X))} =
nify {(x = h(x)), (9(x) = x)} (Decomp) =
nify {(x = h(x)), (x = g(x))} (Orient) =

~N C. C. (C

Example
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* Example of Failure: Occurs Check

B .0 c

nify{(f(x, g(x)) = f(h(x), X))} =
nify {(x = h(x)), (9(x) = x)} (Decomp) =
nify {(x = h(x)), (x = g(x))} (Orient) =

No rules apply. x is in h(x), and x is in g(x).

Example _



! Questions so far?
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! Algorithm, Revisited
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* Unification Algorithm

CaseS ={(s,t)} U S ->

m Delete: if s = t (same term), consider just S’

m Decompose: if s and t apply the same function to
the same number of arguments, consider just the
pairs of arguments

. m Orient: if t = x is a variable,

(Four main steps.\ and s is not a variable, flip it so

= Delete we get a variable on the LHS

m Decompose m Eliminate: If we have a

m Orient variable on the LHS not in the

= Eliminate y RHS, substitute
\ Algorithm
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* Unification Algorithm

CaseS ={(s,t)} U S ->

m Delete: if s = t (same term) then Unif(S) = Unif(S’)
s Decompose: if s = f(q,,..., q )and t =f(r ..., r_)
then Unif(S) = Unif({(q,, r,), ..., (9., r. )} U S)

‘Four main step o\ ® Orient: if t = x is a variable,

and s is not a variable,
= Delete Unif(S) = Unif ({(x = s)} U S
m Decompose m Eliminate: If we have a
m Orient variable on the LHS not in the

\= Eliminate y RHS, needs own slide ...

Algorithm
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* Unification Algorithm

m Eliminate: if s = x is a variable, and x does not
occur in t (the occurs check), then

Algorithm
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* Unification Algorithm

m Eliminate: if s = x is a variable, and x does not
occur in t (the occurs check), then

mletp ={x -t}
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* Unification Algorithm

m Eliminate: if s = x is a variable, and x does not
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* Unification Algorithm

m Eliminate: if s = x is a variable, and x does not
occur in t (the occurs check), then

mletp ={x -t}
= Unif(S) = Unif(¢(S)) o {x — t}
m Let g = Unif(¢p(S"))
= Unif(S) = {x > w(®)} o w
m Note:
{x—>ajto{y—Db}=
{y — ({x — a}(b))} o {x — a}

if y notin a

Algorithm
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* Tricks for Efficient Unification

m Don't return substitution; rather, do it
incrementally

m Make substitution be constant time

m Requires implementation of terms to use
mutable structures (or possibly lazy structures)

m We won't discuss these

Algorithm
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{ Questions?
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{ What's Next
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* Three Main Topics

New
Programming
Paradigm

Language
Semantics

Language
Translation
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* Three Main Topics

so far

¢

Language
Semantics

Language
Programming Translation

Paradigm
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* Three Main Topics

more

New
Programming
Paradigm

Language
Semantics

Language
Translation
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‘Language Translation
so far

¢
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‘Language Translation

next

¢
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Every Interpreter Does This

Source Program

Lexer

l

Tokens

Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation

l

Result

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




Every Compiler Does This

Source Program

Lexer

l

Tokens

Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Translation

l

Lower-Level Representation

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




Many Compilers Do This

Source Program

Lexer

l

Tokens

Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Translation

Intermediate
Representation (IR)

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




Many Compilers Do This

Source Program Evalulation
Result
Lexer
l
Tokens
Parser
|
Abstract Syntax

l
Semantic Analysis

|
Symbol Table
|

Translation

Intermediate
Representation (IR)

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




Many Compilers Do This

Source Program

Lexer

l

Tokens

Parser

l
Abstraft Syntax

Semantic Analysis

l
Symbol Table
|

Translation

Intermediate
Representation (IR)

Optimization

l
Optimilzed IR

Instruction
Selection

Machine-Spe}cific Assembly

Optimization

Optimized Malchine-Specific

Asseﬁnbly

Emitting Code

I
Asselmbly

Assembler

Relocatable

Object Code
|

Linker

l
Machine Code

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




* We Will Stay Here

Source Program

Lexer

l

Tokens

Parser

l
Abstra?t Syntax

Semantic Analysis

l
Symbol Table
|

Evaluation/
Translation

l
Result/IR

Modified from “"Modern Compiler Implementation in ML" by Andrew Appel




* Next Class

EC2 will be up

WAG6 due Thursday

All deadlines can be found on course website
Use office hours and class forums for help
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