
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Objectives for Today

2

■ Last class, we took a step back, asking how would
we actually automate transformations like CPS?

■ We need needed a way to represent the syntax of
our language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

■ We got that—datatypes
■ Today, we’ll continue covering recursive

datatypes, including mutually recursive
datatypes, emphasizing how they can represent
the syntax of programs for transformations

Objectives for Today

3

■ Last class, we took a step back, asking how would
we actually automate transformations like CPS?

■ We need needed a way to represent the syntax of
our language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

■ We got that—datatypes
■ Today, we’ll continue covering recursive

datatypes, including mutually recursive
datatypes, emphasizing how these can represent
the syntax of programs for transformations

4

 Questions from Tuesday?

5

 Recursive Datatypes, Continued

* 6

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Datatypes

* 7

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Datatypes

* 8

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 9

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 10

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 11

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 12

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 13

Reminder: Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 14

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf_value tree =
 match tree with
 | (Leaf n) -> n
 | Node (l, r) -> first_leaf_value l;;
val first_leaf_value : int_Bin_Tree -> int = <fun>
let left = first_leaf_value my_tree;;
val left : int = 3

Recursive Datatypes

* 15

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf_value tree =
 match tree with
 | (Leaf n) -> n
 | Node (l, r) -> first_leaf_value l;;
val first_leaf_value : int_Bin_Tree -> int = <fun>
let left = first_leaf_value my_tree;;
val left : int = 3

Recursive Datatypes

* 16

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf_value tree =
 match tree with
 | (Leaf n) -> n
 | Node (l, r) -> first_leaf_value l;;
val first_leaf_value : int_Bin_Tree -> int = <fun>
let left = first_leaf_value my_tree;;
val left : int = 3

Recursive Datatypes

* 17

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 18

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 19

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 20

Recursive Functions

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

* 21

Recursive Functions

let rec first_leaf_value tree =
 match tree with
 | (Leaf n) -> n
 | Node (l, r) -> first_leaf_value l;;
let left = first_leaf_value my_tree;;
val left : int = 3 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (t1, t2) -> sum_tree t1 + sum_tree t2

* 22

Problem

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (t1, t2) -> sum_tree t1 + sum_tree t2

* 23

Problem

What’s the first thing we do?

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (t1, t2) -> sum_tree t1 + sum_tree t2

* 24

Problem

What are the cases?

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree t1 + sum_tree t2

* 25

Problem

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree t1 + sum_tree t2

* 26

Problem

What’s the base case?

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree t1 + sum_tree t2

* 27

Problem

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree t1 + sum_tree t2

* 28

Problem

What’s the recursive case?

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree l + sum_tree r

* 29

Problem

Recursive Datatypes

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
 match t with
 | Leaf n -> n
 | Node (l, r) -> sum_tree l + sum_tree r

* 30

Problem

Recursive Datatypes

31

 Questions so far?

32

 Representing Language Syntax

* 33

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string (* variables *)
 | ConstExp of const (* constants *)
 | MonOpAppExp of mon_op * exp (* unary ops *)
 | BinOpAppExp of bin_op * exp * exp (* bin ops *)
 | IfExp of exp * exp * exp (* conditionals *)
 | AppExp of exp * exp (* function application *)
 | FunExp of string * exp (* functions *)

Representing Language Syntax

* 34

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string (* variables *)
 | ConstExp of const (* constants *)
 | MonOpAppExp of mon_op * exp (* unary ops *)
 | BinOpAppExp of bin_op * exp * exp (* bin ops *)
 | IfExp of exp * exp * exp (* conditionals *)
 | AppExp of exp * exp (* function application *)
 | FunExp of string * exp (* functions *)

Representing Language Syntax

* 35

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string (* variables *)
 | ConstExp of const (* constants *)
 | MonOpAppExp of mon_op * exp (* unary ops *)
 | BinOpAppExp of bin_op * exp * exp (* bin ops *)
 | IfExp of exp * exp * exp (* conditionals *)
 | AppExp of exp * exp (* function application *)
 | FunExp of string * exp (* functions *)

Representing Language Syntax

* 36

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string (* variables *)
 | ConstExp of const (* constants *)
 | MonOpAppExp of mon_op * exp (* unary ops *)
 | BinOpAppExp of bin_op * exp * exp (* bin ops *)
 | IfExp of exp * exp * exp (* conditionals *)
 | AppExp of exp * exp (* function application *)
 | FunExp of string * exp (* functions *)

Representing Language Syntax

* 37

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6?

Representing Language Syntax

* 38

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6?

 ??? (IntConst 6)

Representing Language Syntax

* 39

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6?

ConstExp (IntConst 6)

Representing Language Syntax

* 40

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6 + 5?
???
 (ConstExp (IntConst 6))
 (ConstExp (IntConst 5))

Representing Language Syntax

* 41

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6 + 5?
??? (IntPlusOp
 (ConstExp (IntConst 6))
 (ConstExp (IntConst 5)))

Representing Language Syntax

* 42

Recursive Data Types in Languages!

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

How to represent 6 + 5?
BinOppAppExp (IntPlusOp
 (ConstExp (IntConst 6))
 (ConstExp (IntConst 5)))

Representing Language Syntax

43

 Representing Language Syntax

✓

Representing Language Syntax

44

 Representing Language Semantics?

?

Representing Language Syntax

* 45

Could Swap If/Else Cases…

type mon_op = …
type bin_op = IntPlusOp | IntMinusOp | EqOp | …
type const = BoolConst of bool | IntConst of int | …
type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp * exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

Representing Language Syntax

46

 Representing Language Semantics?

?

Representing Language Syntax

47

 Questions so far?

48

 Functions About Language Syntax

* 49

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?

 Functions About Syntax

* 50

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x ->
 | ConstExp c ->
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

 Functions About Syntax

* 51

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x ->
 | ConstExp c ->
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

How many variables
are in a variable?

 Functions About Syntax

* 52

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c ->
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

 Functions About Syntax

* 53

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c ->
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

How many variables
are in a constant?

 Functions About Syntax

* 54

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

 Functions About Syntax

* 55

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) ->
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

How many variables
are in (b e1 e2)?

 Functions About Syntax

* 56

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x, e) ->
 | AppExp (e1, e2) ->

 Functions About Syntax

* 57

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x, e) ->
 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

(The app case is similar.)

 Functions About Syntax

* 58

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x, e) ->
 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

How many variables in
a function from arg x to
body e? Depends …

 Functions About Syntax

* 59

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x, e) -> varCnt e
 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

How many variables in
a function from arg x to
body e, not counting x?

 Functions About Syntax

* 60

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp
 | FunExp of string * exp | AppExp of exp * exp

■ How to count the number of variables in an exp?
let rec varCnt exp =
 match exp with
 | VarExp x -> 1
 | ConstExp c -> 0
 | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
 | FunExp (x, e) -> 1 + varCnt e
 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

How many variables in
a function from arg x to
body e, counting x?

 Functions About Syntax

61

 Reasoning About Syntax

 Functions About Syntax

✓

62

 Representing Language Semantics?

 Functions About Syntax

✓

63

 Questions so far?

64

 Your turn: Try Problem 3 on MP5

65

 Mapping Over Recursive Types

* 66

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) -> int_Bin_Tree -> int_Bin_Tree = <fun>

 Map

* 67

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) -> int_Bin_Tree -> int_Bin_Tree = <fun>

 Map

* 68

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) ->int_Bin_Tree -> int_Bin_Tree = <fun>

* 68

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Map

* 69

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) ->int_Bin_Tree -> int_Bin_Tree = <fun>

* 69

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Map

* 70

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) ->int_Bin_Tree -> int_Bin_Tree = <fun>

* 70

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Map

* 71

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) ->int_Bin_Tree -> int_Bin_Tree = <fun>

* 71

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Map

* 72

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
val ibtreeMap :
 (int -> int) ->int_Bin_Tree -> int_Bin_Tree = <fun>

* 72

 Node

 Node Leaf (f (-7))

Leaf (f 3) Leaf (f 6) Map

* 73

Mapping over Recursive Types

* 73

 Node

 Node Leaf (f (-7))

Leaf (f 3) Leaf (f 6)

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;

 Map

* 74

Mapping over Recursive Types

* 74

 Node

 Node Leaf (-5)

Leaf 5 Leaf 8

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;

 Map

let rec ibtreeMap f tree =
 match tree with
 | Leaf n -> Leaf (f n)
 | Node (l, r) -> Node (ibtreeMap f l, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;
- : int_Bin_Tree =
 Node (Node (Leaf 5, Leaf 8), Leaf (-5))

* 75

Mapping over Recursive Types

* 75
 Map

76

 Folding Over Recursive Types

77

 Folding Over Recursive Types

Caveat: “left” and “right”
no longer make sense in
general. One canonical
fold; others are quirks of
symmetry as with lists.

78

 Folding Over Recursive Types

Caveat: Folks tend to call
the general fold a “right”
fold though.

* 79

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with
 | Leaf n -> leafFun n
 | Node (l, r) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun l)
 (ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
 (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree -> 'a
= <fun>

 Fold

* 80

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with
 | Leaf n -> leafFun n
 | Node (l, r) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun l)
 (ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
 (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree -> 'a
= <fun>

How to transform data?

 Fold

* 81

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with
 | Leaf n -> leafFun n
 | Node (l, r) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun l)
 (ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
 (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree -> 'a
= <fun>

How to combine subtree results?

 Fold

* 82

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

Folding over Recursive Types

 Fold

* 83

Folding over Recursive Types

* 83* 83

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

* 84

Folding over Recursive Types

* 84* 84

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 85

Folding over Recursive Types

* 85* 85

+
2

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 86

Folding over Recursive Types

* 86* 86

+
2

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 87

Folding over Recursive Types

* 87* 87

+
2

+
9

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 88

Folding over Recursive Types

* 88* 88

+
2

+
9

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 89

Folding over Recursive Types

* 89* 89

+
2

+
93

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6

* 90

Folding over Recursive Types

* 90* 90

+
2

+
93 6

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

 Leaf 3 Leaf 6

* 91

Folding over Recursive Types

* 91* 91

+
2

+
93 6

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

 Leaf 3 Leaf 6

* 92

Folding over Recursive Types

* 92* 92

+
2

+
93 6

-7

 Fold

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

 Node

 Node Leaf (-7)

 Leaf 3 Leaf 6

* 93

Folding over Recursive Types

* 93* 93

+
2

+
93 6

-7

 Fold

 Node

 Node Leaf (-7)

 Leaf 3 Leaf 6

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;
- : int = 2

* 94

Folding over Recursive Types

* 94* 94

+
2

+
93 6

-7

 Fold

95

 Questions so far?

96

 Aside: Folding over ASTs

97

 Aside: Folding over ASTs

Extra credit (EC2) will be
about this—will post soon!

98

 Mutually Recursive Datatypes

* 99

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 100

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 101

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 102

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 103

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 104

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 105

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 106

Mutually Recursive Types

type 'a tree =
 TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList =
 Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypes

* 107

Mutually Recursive Types - Values

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7))))))

 5 7

 3 2

Mutually Recursive Datatypes

* 108

Mutually Recursive Types - Values

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

 5 7

 3 2

Mutually Recursive Datatypes

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

* 109

Mutually Recursive Types - Values

 5 7

 3 2

Mutually Recursive Datatypes

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

* 110

Mutually Recursive Types - Values

 5 7

 3 2

Mutually Recursive Datatypes

 5 7

 3 2

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

* 111

Mutually Recursive Types - Values

Mutually Recursive Datatypes

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

 5 7

 3 2

* 112

Mutually Recursive Types - Values

Mutually Recursive Datatypes

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

* 113

Mutually Recursive Types - Values

 5 7

 3 2

Mutually Recursive Datatypes

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

* 114

Mutually Recursive Types - Values

 5 7

 3 2

Mutually Recursive Datatypes

* 115

Mutually Recursive Types - Values

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

 5 7

 3 2

Mutually Recursive Datatypes

* 116

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2
Mutually Recursive Datatypes

* 117

Mutually Recursive Functions

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

 5 7

 3 2

Mutually Recursive Datatypes

* 118

Mutually Recursive Functions

TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))

 5 7

 3 2

Mutually Recursive Datatypes

* 119

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 120

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 121

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 122

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 123

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 124

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 125

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 126

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 127

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 128

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 129

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 | TreeLeaf x -> [x]
 | TreeNode list -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 | Last tree -> fringe tree
 | More (tree, list) ->
 (fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes

* 130

Mutually Recursive Functions

 5 7

 3 2

let tree = TreeNode
 (More (TreeLeaf 5,
 (More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))))
 in fringe tree;;
- : int list = [5; 3; 2; 7]

Mutually Recursive Datatypes

131

 Questions so far?

132

 Nested Recursive Datatypes

* 133

Nested Recursive Types

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

 Nested Recursive Datatypes

* 134

Nested Recursive Types - Values

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

TreeNode
 (5,
 [TreeNode (3, []);
 TreeNode
 (2, [TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

 Nested Recursive Datatypes

* 135

Nested Recursive Types - Values

(* A simpler definition, allowing empty lists *)
type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);;

TreeNode
 (5,
 [TreeNode (3, []);
 TreeNode
 (2, [TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

5

3 2 5

1 7

 Nested Recursive Datatypes

* 136

Nested Recursive Types - Values

ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

 Nested Recursive Datatypes

* 137

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with
 | TreeNode (x, ts) -> x :: flatten_tree_list ts
and flatten_tree_list ts =
 match ts with
 | [] -> []
 | labtree :: labtrees ->
 flatten_tree labtree @ flatten_tree_list labtrees

 Nested Recursive Datatypes

* 138

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with
 | TreeNode (x, ts) -> x :: flatten_tree_list ts
and flatten_tree_list ts =
 match ts with
 | [] -> []
 | labtree :: labtrees ->
 flatten_tree labtree @ flatten_tree_list labtrees

Nested recursive types lead to
mutually recursive functions!

 Nested Recursive Datatypes

139

 Questions?

Takeaways

140

■ We saw three kinds of datatypes:
■ recursive
■ mutually recursive
■ nested recursive

■ All useful for representing language syntax
■ Functions over these datatypes can reason about

program syntax, interpret programs (implicitly defining
a semantics), transform programs, etc.

■ Recursive types -> recursive functions
■ Mutually recursive types -> mutual recursion
■ Nested recursive types -> mutual recursion, too

Next Class

141

■ Will grade EC1 soon!
■ Will post EC2 soon!
■ MP4 will be due next Tuesday
■ WA4 will be due next Thursday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

