+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Objectives for Today

m Last class, we took a step back, asking how would
we actually automate transformations like CPS?

m We need needed a way to represent the syntax of
our language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

m We got that—datatypes

* Objectives for Today

m Last class, we took a step back, asking how would
we actually automate transformations like CPS?

m We need needed a way to represent the syntax of
our language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

m We got that—datatypes

m Today, we'll continue covering recursive
datatypes, including mutually recursive
datatypes, emphasizing how these can represent
the syntax of programs for transformations

! Questions from Tuesday?

! Recursive Datatypes, Continued

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Recursive Datatypes i

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Datatypes

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))
Node

Node Leaf (-7)

Leaf 3 |_>af 6 Recursive Datatypes

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
[Node](Node (Leaf 3, Leaf 6), Leaf (-7))

!Node!

Leaf (-7)

Node

Leaf 3 |_>af 6 Recursive Datatypes

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
[Node]([Node (Leaf 3, Leaf 6], Leaf (-7))

Node
- %J\

Node Leaf (-7)

KLeaf 3 |_>af 6) Recursive Datatypes

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node |(Node (Leaf 3, Leaf 6)/ Leaf (-7))
Node
g Node L eaf (-7)]

KLeaf 3 |_>af 6 ') Recursive Datatypes

1

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node ([Node (Leaf 3, Leaf 6], Leaf (-7))

Node

f AN\

Node Leaf (-7)

KLeaf 3 |_>af 6 ') Recursive Datatypes

2

* Reminder: Recursive Datatypes

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node ([NodeILeaf 3)|Leaf 6), Leaf (-7))

Node

Node]/ Leaf (-7)
[Leaf 3{' Ledf 6 l Recursive Datatypes

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf value tree =
match tree with
| (Leaf n) -> n
| Node (I, r) -> first_leaf value [;;
val first_leaf value : int_Bin_Tree -> int = <fun>

Recursive Datatypes y

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf value tree =
match tree with
| (Leaf n) -> n
| Node (I, r) -> first_leaf _value I;;
val first_leaf value : int_Bin_Tree -> int = <fun>

Recursive Datatypes N

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let rec first_leaf value tree =
match tree with
| (Leaf n) -> n
| Node (I, r) -> first_leaf _value I;;
val first_leaf value : int_Bin_Tree -> int = <fun>
let left = first_leaf_value my_tree;;
val left : int = 3

Recursive Datatypes y

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Node

N

Node Leaf (-7)

Leaf 3 |_>af 6 Recursive Datatypes

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Node
Node/ \eaf (-7)

Leaf 3 |_>af 6 Recursive Datatypes

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Node
Node/ \eaf (-7)

Leaf 3 kaf 6 Recursive Datatypes _

* Recursive Functions

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Node
Node/ \eaf (-7)

Leaf 3 kaf 6 Recursive Datatypes

i Recursive Functions

let rec first_leaf value tree =

match tree with

| (Leaf n) -> n

| Node (I, r) -> first_leaf value I;;
let left = first_leaf_value my_tree;;
val left @ int = 3 Node

Node/ \eaf (-7)

Leaf 3 kaf 6 Recursive Datatypes

1

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

) Recursive Datatypes

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

What's the first thing we do?

Recursive Datatypes .

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
match t with

What are the cases?

) Recursive Datatypes

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

match t with

| Leaf n ->

| Node (I, r) ->

) Recursive Datatypes

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

match t with
| Leaf n -> |What's the base case?
| Node (I, r) ->

Recursive Datatypes N

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

match t with

| Leaf n -> n

| Node (I, r) ->

Recursive Datatypes .

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

match t with

| Leaf n -> n

| Node (I, r) -> |What's the recursive case?

Recursive Datatypes .

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Write sum_tree : int_Bin_Tree -> Int

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =

match t with

| Leaf n -> n

| Node (I, r) -> sum_tree | + sum_tree r

) Recursive Datatypes

* Problem

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

(* adds all ints in an int_Bin_Tree *)
let rec sum_tree t =
match t with
| Leaf n -> n
| Node (I, r) -> sum_tree | + sum_tree r

Recursive Datatypes o

! Questions so far?

31

! Representing Language Syntax

32

* Recursive Data Types in Languages!

type exp =

VarExp of string (* variables *)

ConstExp of const (* constants *)

MonOpAppExp of mon_op * exp (* unary ops *)
BinOpAppExp of bin_op * exp * exp (* bin ops *)
IfExp of exp * exp * exp (* conditionals *)
AppExp of exp * exp (* function application *)
FunExp of string * exp (* functions *)

Representing Language Syntax 33

* Recursive Data Types in Languages!

type const = BoolConst of bool | IntConst of int | ...
type exp =

VarExp of string (* variables *)

ConstExp of const (* constants *)
MonOpAppExp of mon_op * exp (* unary ops *)
BinOpAppExp of bin_op * exp * exp (* bin ops *)
IfExp of exp * exp * exp (* conditionals *)
AppExp of exp * exp (* function application *)
FunExp of string * exp (* functions *)

Representing Language Syntax N

* Recursive Data Types in Languages!

type bin_op = IntPlusOp | IntMinusOp | EqOp | ...
type const = BoolConst of bool | IntConst of int | ...
type exp =

VarExp of string (* variables *)

ConstExp of const (* constants *)

MonOpAppExp of mon_op * exp (* unary ops *)
BinOpAppExp of bin_op * exp * exp (* bin ops *)
IfExp of exp * exp * exp (* conditionals *)
AppExp of exp * exp (* function application *)
FunExp of string * exp (* functions *)

Representing Language Syntax N

* Recursive Data Types in Languages!

type mon_op = ...
type bin_op = IntPlusOp | IntMinusOp | EQOp | ...
type const = BoolConst of bool | IntConst of int | ...
type exp =

VarExp of string (* variables *)

ConstExp of const (* constants *)

MonOpAppExp of mon_op * exp (* unary ops *)
BinOpAppExp of bin_op * exp * exp (* bin ops *)
IfExp of exp * exp * exp (* conditionals *)
AppExp of exp * exp (* function application *)
FunExp of string * exp (* functions *)

Representing Language Syntax y

* Recursive Data Types in Languages!

type const = BoolConst of bool | IntConst of int | ...
type exp =
VarExp of string How to represent 6?
ConstExp of const
MonOpAppExp of mon_op * exp
BinOpAppEXxp of bin_op * exp * exp
IfExp of exp * exp * exp

AppEXxp of exp * exp

FunExp of string * exp

Representing Language Syntax -

* Recursive Data Types in Languages!

type const = BoolConst of bool | IntConst of int | ..
type exp =
VarExp of string ‘How to represent 6? ‘
ConstExp of const 22? (IntConst 6)
MonOpAppEXxp of monlep——rp
BinOpAppEXxp of bin_op * exp * exp
IfExp of exp * exp * exp

AppEXxp of exp * exp

FunExp of string * exp

Representing Language Syntax .

* Recursive Data Types in Languages!

type const = BoolConst of bool | IntConst of int | ..
type exp =
VarExp of string ‘How to represent 6? ‘
ConstExp of const | constExp (IntConst 6)
MonOpAppEXxp of montep——rp
BinOpAppEXxp of bin_op * exp * exp
IfExp of exp * exp * exp

AppEXxp of exp * exp

FunExp of string * exp

Representing Language Syntax o

* Recursive Data Types in Languages!

type const = BoolConst of bool | IntConst of int | ..

type exp = > ‘
VarExp of string How to represent 6 + 5+

ConstExp of const|???
MonOpAppExp of m{ (ConstExp (IntConst 6))
BinOpAppExp of bin| (ConstExp (IntConst 5))

IfExp of exp * exp * exp
AppEXxp of exp * exp
FunExp of string * exp

Representing Language Syntax .

* Recursive Data Types in Languages!

type bin_op = IntPlusOp | IntMinusOp | EqQOp | ..
type const = BoolConst of bool | IntConst of int | ..

type exp = > ‘
VarExp of string How to represent 6 + 5+

ConstExp of const|??? (IntPlusOp
MonOpAppExp of m{ (ConstExp (IntConst 6))
BinOpAppExp of bin| (ConstExp (IntConst 5)))

IfExp of exp * exp * exp
AppEXxp of exp * exp
FunExp of string * exp

Representing Language Syntax .

* Recursive Data Types in Languages!

type bin_op = IntPlusOp | IntMinusOp | EqQOp | ..
type const = BoolConst of bool | IntConst of int | ..

type exp = > ‘
VarExp of string How to represent 6 + 5+

ConstExp of const|BinOppAppExp (IntPlusOp
MonOpAppExp of m{ (ConstExp (IntConst 6))
BinOpAppExp of b| (ConstExp (IntConst 5)))

IfExp of exp * exp * exp
AppEXxp of exp * exp
FunExp of string * exp

Representing Language Syntax .

v/

! Representing Language Syntax

Representing Language Syntax .

?

! Representing Language Semantics?

Representing Language Syntax ,

* Could Swap If/Else Cases...

type exp =

VarExp of string

ConstExp of const

MonOpAppExp of mon_op * exp
BinOpAppEXxp of bin_op * exp * exp
IfExp of exp * exp * exp

AppEXxp of exp * exp

FunExp of string * exp

Representing Language Syntax N

?

! Representing Language Semantics?

Representing Language Syntax .

! Questions so far?

47

! Functions About Language Syntax

48

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?

Functions About Syntax .

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x ->
ConstExp ¢ ->
BinOpAppExp (b, el, e2) ->
Funkxp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> |How many variables
ConstExp c -> |are in a variable?
BinOpAppEXxp (b, el, e2) ->
FunExp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1
ConstExp ¢ ->
BinOpAppExp (b, el, e2) ->
Funkxp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXxp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1 |How many variables
ConstExp c -> |are in a constant?

BinOpAppExp (b, el, e2) ->
FunExp (x, e) ->
AppExp (el, e2) ->

Functions About Syntax -

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1
ConstExpc-> 0
BinOpAppExp (b, el, e2) ->
Funkxp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1 How many variables
ConstExp ¢ -> 0 arein (b el e2)?
BinOpAppExp (b, el, e2) ->
Funkxp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1
ConstExp c-> 0
BinOpAppExp (b, €1, e2) -> varCnt el + varCnt e2
Funkxp (x, e) ->
AppExp (el, e2) ->

. Functions About Syntax _

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?
let rec varCnt exp =
match exp with
VarExp x -> 1
ConstExp ¢ -> 0 ‘(The app case is similar.) ‘
BinOpAppExp (b, €1, e2) -> varCnt el + varCnt e2
Funkxp (x, e) ->
AppExp (el, e2) -> varCnt el + varCnt e2

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?

let rec varCnt exp = - _
match exp with How many variables in

a function from arg x to
VarE -> 1
arxp body e? Depends ...

ConstExp c-> 0

BinOpAppExp (b, el, e2) -> varCnt el + varCnt e2
FunExp (x, e) ->
AppEXxp (el, e2) -> varCnt el + varCnt e2

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?

let rec varCnt exp = - _
match exp with How many variables in

VarExp x -> 1 z f:lmctlon 1from at|_-g X tg
ConstExp ¢ -> 0 ody €, not counting X:

BinOpAppExp (b, el, e2) -> varCnt el + varCnt e2
FunExp (x, e) -> varCnt e

AppEXxp (el, e2) -> varCnt el + varCnt e2

. Functions About Syntax

* Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BINOpAppEXp of bin_op * exp * exp
| FUNEXp of string * exp | AppExp of exp * exp
m How to count the number of variables in an exp?

let rec varCnt exp = - _
match exp with How many variables in

VarExp X -> 1 a function from arg x to
body e, counting x?

ConstExp c-> 0
BinOpAppExp (b, el, e2) -> varCnt el + varCnt e2
FunExp (x, €) -> 1 + varCnt e

AppEXxp (el, e2) -> varCnt el + varCnt e2

. Functions About Syntax

v/

! Reasoning About Syntax

Functions About Syntax

v/

! Representing Language Semantics?

Functions About Syntax

! Questions so far?

63

! Your turn: Try Problem 3 on MP5

64

! Mapping Over Recursive Types

65

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;
val ibtreeMap :
(int -> int) -> int_Bin_Tree -> int_Bin_Tree = <fun>

Map

66

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;
val ibtreeMap :
(int -> Int) -> int_Bin_Tree -> int_Bin_Tree = <fun>

Map

67

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;

Node

N

Node Leaf (-7)

Leaf 3 |_>af 6 Map

68

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;

Node

N

Node Leaf (-7)

Leaf 3 |_>af 6 Map

69

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;

Node

Node/ \.eaf (-7)

Leaf 3 |_>af 6 Map

70

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;

Node

N

Node Leaf (-7)

Leaf 3 kaf 6 Map

/1

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
| Leaf n -> Leaf (f n)
| Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;

Node

N

Node Leaf (f (-7))

7\
Leaf (f 3) Leaf (f 6) Map

72

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
Leaf n -> Leaf (f n)
Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;

Node
Node / \Leaf (f (-7))
7\
Leaf (f 3) Leaf (f 6) Map

73

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
Leaf n -> Leaf (f n)
Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;

Node

N

Leaf (-5)

Node

Leaf 5 L X Map

74

* Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with
Leaf n -> Leaf (f n)
Node (I, r) -> Node (ibtreeMap f |, ibtreeMap f r);;
ibtreeMap ((+) 2) my_tree;;
- 1 Int_Bin_Tree =
Node (Node (Leaf 5, Leaf 8), Leaf (-5))

Map

75

! Folding Over Recursive Types

76

! Folding Over Recursive Types

(Caveat: “left” and “right”\
no longer make sense in
general. One canonical
fold; others are quirks of

\Symmetry as with lists.

! Folding Over Recursive Types

fCaveat: Folks tend to call A
the general fold a “right”
kfold though.

78

* Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with
| Leaf n -> leafFun n
| Node (I, r) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun |)
(ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
(int -> 'a) -> ('fa->'a ->'a) -> int_Bin_Tree -> 'a
= <fun>
Fold

b3

9

* Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with
| Leaf n -> leafFun n |How to transform data?
| Node (I, r) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun |)
(ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
(int->'a) -> ('a->'a->"a) -> int_Bin_Tree -> 'a
= <fun>

Fold
8

b3

0

* Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with
| Leaf n -> leafFun n

| Node (I, r) ->

nodeFun How to combine subtree results?

(ibtreeFoldRight leafFun nodeFun |)
(ibtreeFoldRight leafFun nodeFun r);;
val ibtreeFoldRight :
(int ->"a) -> (fa->"'a->"a) -> int_Bin_Tree -> 'a
= <fun>
Fold .

b3

1

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>

Fold
8

2

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

N

Node Leaf (-7)

Leaf 3 L;f 6

Fold
8

3

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

N

Node Leaf (-7)

Leaf 3 L;f 6

Fold
8

4

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

IS

4 Node Leaf (-7)

Leaf 3 L;f 6 >-Y-
\§ J

Fold
8

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

A

4 Node Leaf (-7)

Leaf 3 L;f 6 >-Y-
\§ J

Fold
8

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

AN

Node Leaf (-7)
: ,// : . ;)
|Lea 3! lﬁﬁ]ﬁi

/ T

+ Fold

7

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node
/ \eaf (-7))

\. J

Y
Leaf 3| |Leaf 6
Leaf6] , +

+ Fold

Node

8

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

AN

Node Leaf (-7)
//’ . ;)
Leaf 3 |Leaf 6
! Leaf6] , +
At Fold _

9

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node
Node \eaf(-7))
Leaf3 \afG k * J
/

Fold

90

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node
Node \eaf (-7))
Leaf3 XafG k * J
/6 9/

Fold

91

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

N

Node Leaf (-7)

\\é -7
Leaf3 f6

/6 9/

Fold

92

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

Node

Node / \eaf(-7)

-7
Leaf 3 Xaf 6

Fold

93

* Folding over Recursive Types

let tree_sum = ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum my_tree;;

-:int=2
Node
Node \Leaf (-7)
Leaf 3 \f 6

Fold

94

! Questions so far?

95

! Aside: Folding over ASTs

96

! Aside: Folding over ASTs

Extra credit (EC2) will be
about this—will post soon!

97

! Mutually Recursive Datatypes

98

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treelist

and 'a treelList =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypes N

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treelist

and 'a treelList =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypes.m0

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treeList

and 'a treelList =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypesm1

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treelList

and 'a treelList =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypesm2

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treeList

and 'a treelist =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypesm3

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treeList

and 'a treelist =
Last of 'a tree | More of (‘a tree * 'a treeList)

Mutually Recursive Datatypesm4

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treeList

and 'a treelist =
Last of 'a tree | More of ('a tree * 'a treelList)

Mutually Recursive Datatypes105

* Mutually Recursive Types

type 'a tree =
TreelLeaf of 'a | TreeNode of 'a treeList

and 'a treelList =
Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Datatypesm6

* Mutually Recursive Types - Values

5 7
3/‘\2

Mutually Recursive Datatypes.107

* Mutually Recursive Types - Values

TreeNode

(

5 7
3/‘\2

Mutually Recursive Datatypes108

* Mutually Recursive Types - Values

TreeNode
(More (

)

5 7
3/‘\2

Mutually Recursive Datatypes.10

9

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,

)

5 7
3/‘\2

Mutually Recursive Datatypes.11

0

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,
(More

Mutually Recursive Datatypes.111

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,
(More
(TreeNode (),

)))

5 7
3/‘\2

Mutually Recursive Datatypes.11

2

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,
(More
(TreeNode (More (TreeLeaf 3, Last (TreelLeaf 2))),

)))

.

Mutually Recursive Datatypes.11

3

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,
(More
(TreeNode (More (TreelLeaf 3, Last (TreelLeaf 2))),
Last (TreeLeaf 7)))))

5 7
3/‘\2

Mutually Recursive Datatypes.11

4

* Mutually Recursive Types - Values

TreeNode
(More (TreeLeaf 5,
(More
(TreeNode (More (TreelLeaf 3, Last (TreelLeaf 2))),
Last (TreelLeaf 7)))))

5 7
3/‘\2

Mutually Recursive Datatypes.11

5

* Mutually Recursive Types - Values

TreeNode

More More Last

TreelLeaf TreIeNode ¥reeLeaf
El MLre Last 7I

T|JeeLeaf TrLeLeaf

L

Mutually Recursive Datatypes.116

* Mutually Recursive Functions

TreeNode
(More (TreeLeaf 5,
(More
(TreeNode (More (TreelLeaf 3, Last (TreelLeaf 2))),
Last (TreelLeaf 7)))))

5 7
3/‘\2

Mutually Recursive Datatypes.11

7

* Mutually Recursive Functions

TreeNode
(More (TreelLeaf 5,
(More
(TreeNode (More (TreelLeaf 3, Last (TreelLeaf 2))),
Last (TreelLeaf 7)))))

A

Mutually Recursive Datatypes.11

8

* Mutually Recursive Functions

let rec fringe tree =

and list_fringe tree_list =

Mutually Recursive Datatypes119

* Mutually Recursive Functions

let rec fringe tree =
match tree with
| TreeLeaf x ->
| TreeNode list ->

and list_fringe tree_list =

Mutually Recursive Datatypes120

* Mutually Recursive Functions

let rec fringe tree =
match tree with
| TreeLeaf x -> [x]
| TreeNode list ->

and list_fringe tree_list =

Mutually Recursive Datatypes.121

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list
and list_fringe tree_list =

Mutually Recursive Datatypes.122

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

Mutually Recursive Datatypes

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree ->

| More (tree, list) ->

Mutually Recursive Datatypes124

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree -> tree

| More (tree, list) ->

Mutually Recursive Datatypes125

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree -> fringe tree

| More (tree, list) ->

Mutually Recursive Datatypes126

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree -> fringe tree

| More (tree, list) ->

tree list

Mutually Recursive Datatypes127

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree -> fringe tree

| More (tree, list) ->

(fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes128

* Mutually Recursive Functions

let rec fringe tree =

match tree with

| TreeLeaf x -> [X]

| TreeNode list -> list_fringe list
and list_fringe tree_list =

match tree_list with

| Last tree -> fringe tree

| More (tree, list) ->

(fringe tree) @ (list_fringe list)

Mutually Recursive Datatypes129

* Mutually Recursive Functions

let tree = TreeNode
(More (TreelLeaf 5,
(More
(TreeNode (More (TreelLeaf 3, Last (TreelLeaf 2))),
Last (TreelLeaf 7)))))
in fringe tree;;
- :intlist = [5; 3; 2; 7]

5 7
3/'\2

Mutually Recursive Datatypes.13

0

! Questions so far?

131

! Nested Recursive Datatypes

132

* Nested Recursive Types

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =

TreeNode of (‘a * 'a labeled_tree list);;

Nested Recursive Datatypes s

* Nested Recursive Types - Values

(* Alt. def, allowing empty lists & values anywhere *)
type 'a labeled_tree =

TreeNode of (‘a * 'a labeled_tree list);;

TreeNode
(5
[TreeNode (3, [1);
TreeNode
(2, [TreeNode (1, []); TreeNode (7, [1)]);
TreeNode (5, [D])

Nested Recursive Datatypes .

* Nested Recursive Types - Values

/

TreeNode

TreeNode

5

AN

3 2 5
(5
[TreeNode (3, [1); / \7
1

(2, [TreeNode (1, []); TreeNode (7, [1)]);

TreeNode (5, [D])

Nested Recursive Datatypes 1

35

* Nested Recursive Types - Values

ltree = TreeNode(5)
[| | /

[]
TreeNodIe(3) Treel\llode(Z) TreIeNode(S)
' ! 2 [] [
TreeNode(l) +reeNode(7)
]]

Nested Recursive Datatypes e

* Mutually Recursive Functions

let flatten_tree labtree =
match labtree with
| TreeNode (X, ts) -> x :: flatten_tree_list ts
flatten_tree_list ts =
match ts with
| [1-> [
| labtree :: labtrees ->
flatten_tree labtree @ flatten_tree_list labtrees

Nested Recursive Datatypes .

* Mutually Recursive Functions

let flatten_tree labtree =
match labtree with
| TreeNode (X, ts) -> x :: flatten_tree_list ts
flatten_tree_list ts =
match ts with
| [1-> [
| labtree :: labtrees ->
flatten_tree labtree @ flatten_tree_list labtrees

Nested recursive types lead to
mutually recursive functions!

Nested Recursive Datatypes .

{ Questions?

139

* Takeaways

m We saw three kinds of datatypes:
m recursive
= mutually recursive
m nhested recursive
m All useful for representing language syntax

m Functions over these datatypes can reason about
program syntax, interpret programs (implicitly defini
a semantics), transform programs, etc.

m Recursive types -> recursive functions
m Mutually recursive types -> mutual recursion
m Nested recursive types -> mutual recursion, too

140

ﬁ Next Class

Will grade EC1 soon!

Will post EC2 soon!

MP4 will be due next Tuesday

WA4 will be due next Thursday

All deadlines can be found on course website
Use office hours and class forums for help

141

