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Objectives for Today

2

■ We will look at another example of the CPS 
Transformation that we saw last week

■ Then, taking a step back—how would we actually 
automate transforming programs like this?

■ We need a way to represent the syntax of our 
language that allows us to (1) construct a 
representation of a new (transformed) program, 
and (2) match over the syntax of the original

■ We’ve seen something like this for lists—if we 
generalize, we get datatypes

■ We’ll cover many kinds of datatypes
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    Please post questions on Piazza!
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    CPS Transformation Example
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CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [ ] -> false
| x :: xs -> 
  if (x = y) then
    true
  else
    mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
  (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
   else memk (y, xs) (* rule 3 *)
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    Please post questions on Piazza!
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    How to implement automatically in 
    compiler, rather than by hand?
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    How do we even represent the 
    syntax of our language, and map   
    over it to transform programs?
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    Datatypes



OCaml Datatype You’ve Seen: lists

■ Frequently used lists in recursive program
■ Matched over two structural cases

■ [ ]  - the empty list
■ (x :: xs) a non-empty list

■ Covers all possible lists
■ type ‘a list = [ ] | (::) of  ‘a * ‘a list

■ Not quite legitimate declaration because of 
special syntax
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OCaml Datatypes in General

■ type name = C1 [of  ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type 

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern 

matching (alt. destruction or, with caveats, 
elimination)

Datatypes
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    Enumeration Types
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OCaml Variants

■ type name = C1 [of  ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type 

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern 

matching (alt. destruction or, with some extra 
machinery, elimination)

Datatypes
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Enumeration Types as Variants

An enumeration type is a collection of distinct 
values

In C and Ocaml they have an order structure; 
order by order of input

Enumeration Types
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Enumeration Types as Variants

# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
type weekday =
    Monday
  | Tuesday
  | Wednesday
  | Thursday
  | Friday
  | Saturday
  | Sunday

Enumeration Types
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Functions over Enumerations

# let day_after day =
     match day with
     | Monday -> Tuesday
     | Tuesday -> Wednesday
     | Wednesday -> Thursday
     | Thursday -> Friday
     | Friday -> Saturday
     | Saturday -> Sunday
     | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

Enumeration Types
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Functions over Enumerations

# let rec days_later n day =
    match n with
    | 0 -> day
    | _ -> 
      if n > 0 then
        day_after (days_later (n - 1) day)
      else 
        days_later (n + 7) day;;
val days_later : int -> weekday -> weekday = <fun>
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# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool 
let is_weekend day = 

* 44

Your turn!

Enumeration Types
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# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool 
let is_weekend day = 
  match day with 
  | Saturday -> true
  | Sunday -> true
  | _ -> false
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Weekend days?

Enumeration Types
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# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool 
let is_weekend day = 
  match day with 
  | _ -> true
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In a better world …
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Other days?

Enumeration Types



Problem:

# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool 
let is_weekend day = 
  match day with 
  | Saturday -> true
  | Sunday -> true
  | Monday -> false
  | Tuesday -> false … 
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More concisely?

Enumeration Types



Problem:

# type weekday = Monday | Tuesday | Wednesday
   | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool 
let is_weekend day = 
  match day with 
  | Saturday -> true
  | Sunday -> true
  | _ -> false
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Yay

Enumeration Types
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Enumeration Types in Languages!

# (* Binary operators *)
  type bin_op = IntPlusOp |  IntMinusOp 
     |  EqOp | CommaOp | ConsOp

# (* Unary operators *)
  type mon_op = HdOp | TlOp | FstOp | SndOp

Enumeration Types
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    Disjoint Union Types
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Disjoint Union Types as Variants

■ Disjoint union of types, with some possibly 
occurring more than once

■ We can also add in some new singleton 
elements

ty1 ty2 ty1

Disjoint Union Types
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Disjoint Union Types

(* Different forms of identification *)
type id = DriversLicense of int
  | SocialSecurity of int | Name of string

let check_id id = 
  match id with
  | DriversLicense num -> 
      not (List.mem num [13570; 99999])
  | SocialSecurity num -> num < 900000000
  | Name str -> not (str = "John Doe")

Disjoint Union Types
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■ Create a type to represent the currencies for US, 
UK, Europe and Japan

type currency =
 | Dollar of int (* US *)
 | Pound of int (* UK *)
 | Euro of int (* Europe *)
 | Yen of int (* Japan *)
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How many constructors?

Disjoint Union Types
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What currencies?

Disjoint Union Types
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How to store values?

Disjoint Union Types
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Disjoint Unions in Languages!

    type const =
      BoolConst of bool 
    | IntConst of int
    | FloatConst of float
    | StringConst of string 
    | NilConst
    | UnitConst 

Disjoint Union Types
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    type const =
      BoolConst of bool 
    | IntConst of int
    | FloatConst of float
    | StringConst of string 
    | NilConst
    | UnitConst 

■ How to represent 7 as a const?
■ Answer:  IntConst 7

Disjoint Unions in Languages!

Disjoint Union Types
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    type const =
      BoolConst of bool 
    | IntConst of int
    | FloatConst of float
    | StringConst of string 
    | NilConst
    | UnitConst 

■ How to represent 7 as a const?
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    Please post questions on Piazza!
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    Polymorphic Datatypes
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Polymorphism in Variants

■ Variants can also be polymorphic
■ For example, the type 'a option gives us 

something to represent non-existence or failure

# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

■ Used to encode partial functions
■ Often can replace the raising of an exception

Polymorphic Datatypes
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Functions producing option

# let rec first p list =
    match list with 
    | [ ] -> None
    | (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
# first (fun x -> x > 3) [1; 3; 4; 2; 5];;
- : int option = Some 4
# first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes
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Functions producing option
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- : int option = None
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Functions over option

# let result_ok r =
   match r with 
   | None -> false
   | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : bool = true
# result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes
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Functions over option
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   | None -> false
   | Some _ -> true;;
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# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : bool = true
# result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes



* 74

Functions over option

# let result_ok r =
   match r with 
   | None -> false
   | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
# result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
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■ Write a hd on lists that doesn’t raise an exception 
and works at all types of lists.
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Your turn!
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Problem

■ Write a hd on lists that doesn’t raise an exception 
and works at all types of lists.

let hd list = 
  match list with 
  | [] -> None
  | (x::xs) -> Some x

* 76

Nil case?

Polymorphic Datatypes



Problem

■ Write a hd on lists that doesn’t raise an exception 
and works at all types of lists.

let hd list = 
  match list with 
  | [] -> None
  | (x :: xs) -> Some x
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Cons case?

Polymorphic Datatypes



Problem

■ Write a hd on lists that doesn’t raise an exception 
and works at all types of lists.

let hd list = 
  match list with 
  | [] -> None
  | (x :: xs) -> Some x
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Mapping over Variants

# let optionMap f opt =
    match opt with
    | None -> None
    | Some x -> Some (f x);;
val optionMap :
  ('a -> 'b) -> 'a option -> 'b option = <fun>
# optionMap
     (fun x -> x - 2)
     (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : int option = Some 2

Polymorphic Datatypes
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Mapping over Variants

# let optionMap f opt =
    match opt with
    | None -> None
    | Some x -> Some (f x);;
val optionMap :
  ('a -> 'b) -> 'a option -> 'b option = <fun>
# optionMap
     (fun x -> x - 2)
     (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : int option = Some 2

Polymorphic Datatypes
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Folding over Variants

# let optionFold someFun noneVal opt =
    match opt with
    | None -> noneVal
    | Some x -> someFun x;;
val optionFold : 
   ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
# let optionMap f opt =
    optionFold (fun x -> Some (f x)) None opt;;
val optionMap : 
   ('a -> 'b) -> 'a option -> 'b option = <fun>

Polymorphic Datatypes
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Folding over Variants

# let optionFold someFun noneVal opt =
    match opt with
    | None -> noneVal
    | Some x -> someFun x;;
val optionFold : 
   ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
# let optionMap f opt =
    optionFold (fun x -> Some (f x)) None opt;;
val optionMap : 
   ('a -> 'b) -> 'a option -> 'b option = <fun>

Polymorphic Datatypes
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    Please post questions on Piazza!
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    Preview: Recursive Datatypes
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Recursive Types as Variants

■ The type being defined may be a component 
of itself

ty ty’ ty

Preview
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Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Preview



* 87

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Preview
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Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

                     Node

         Node               Leaf (-7)

Leaf 3      Leaf 6 Preview
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Recursive Data Types in Languages!

# type exp = 
   | VarExp of string
   | ConstExp of const
   | MonOpAppExp of mon_op * exp 
   | BinOpAppExp of bin_op * exp * exp
   | IfExp of exp* exp * exp
   | AppExp of exp * exp
   | FunExp of string * exp

Preview
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    How do we even represent the 
    syntax of our language, and map   
    over it to transform programs?

✓
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    How to implement automatically in 
    compiler, rather than by hand?

✓
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    Please post questions on Piazza!



Takeaways
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■ Variants let us represent custom datatypes
■ Can be polymorphic
■ Can be recursive
■ Can represent lists and trees
■ Can represent language syntax!

■ Can do two things with them:
■ construct
■ destruct (match, eliminate)

■ Can write program transformations, 
interpreters, and compilers this way :)



Next Class
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■ I will be back! Lecture will happen in person
■ EC1 is due, if interested (extra credit)
■ WA3XC also due, if interested (extra credit)
■ MP4 will be due next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help


