
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Objectives for Today

2

■ We will look at another example of the CPS
Transformation that we saw last week

■ Then, taking a step back—how would we actually
automate transforming programs like this?

■ We need a way to represent the syntax of our
language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

■ We’ve seen something like this for lists—if we
generalize, we get datatypes

■ We’ll cover many kinds of datatypes

Objectives for Today

3

■ We will look at another example of the CPS
Transformation that we saw last week

■ Then, taking a step back—how would we actually
automate transforming programs like this?

■ We need a way to represent the syntax of our
language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

■ We’ve seen something like this for lists—if we
generalize, we get datatypes

■ We’ll cover many kinds of datatypes

Objectives for Today

4

■ We will look at another example of the CPS
Transformation that we saw last week

■ Then, taking a step back—how would we actually
automate transforming programs like this?

■ We need a way to represent the syntax of our
language that allows us to (1) construct a
representation of a new (transformed) program,
and (2) match over the syntax of the original

■ We’ve seen something like this for lists—if we
generalize, we get datatypes

■ We’ll cover many kinds of datatypes

5

 Please post questions on Piazza!

6

 CPS Transformation Example

* 7

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 8

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 9

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 10

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 11

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 12

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 13

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 14

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 15

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) (* rule 3 *)

CPS Transformation Example

* 16

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k (* rule 3 *)

CPS Transformation Example

* 17

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k (* rule 3 *)

CPS Transformation Example

* 18

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

* 19

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

* 20

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

* 21

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

* 22

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

* 23

CPS Example: List Membership

Before:
let rec mem (y, lst) =
match lst with
| [] -> false
| x :: xs ->
 if (x = y) then
 true
 else
 mem (y, xs)

After:
let rec memk (y, lst) k = (* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs -> (* rule 4 *)
 eqk (x, y) (fun b -> if b then
 k true (* rule 2 *)
 else
 memk (y, xs) k) (* rule 3 *)

CPS Transformation Example

24

 Please post questions on Piazza!

25

 How to implement automatically in
 compiler, rather than by hand?

26

 How do we even represent the
 syntax of our language, and map
 over it to transform programs?

27

 Datatypes

OCaml Datatype You’ve Seen: lists

■ Frequently used lists in recursive program
■ Matched over two structural cases

■ [] - the empty list
■ (x :: xs) a non-empty list

■ Covers all possible lists
■ type ‘a list = [] | (::) of ‘a * ‘a list

■ Not quite legitimate declaration because of
special syntax

* 28
Datatypes

OCaml Datatype You’ve Seen: lists

■ Frequently used lists in recursive program
■ Matched over two structural cases

■ [] - the empty list
■ (x :: xs) a non-empty list

■ Covers all possible lists
■ type ‘a list = [] | (::) of ‘a * ‘a list

■ Not quite legitimate declaration because of
special syntax

* 29
Datatypes

* 30

OCaml Datatypes in General

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern

matching (alt. destruction or, with caveats,
elimination)

Datatypes

* 31

OCaml Datatypes in General

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern

matching (alt. destruction or, with some extra
machinery, elimination)

Datatypes

* 32

OCaml Datatypes in General

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern

matching (alt. destruction or, with some extra
machinery, elimination)

Datatypes

* 33

Datatypes in General

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all case

analysis (alt. destruction or, with some extra
machinery, induction)

Datatypes

* 34

OCaml Datatypes in General

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern

matching (alt. destruction or, with some extra
machinery, elimination)

Datatypes

35

 Enumeration Types

* 36

OCaml Variants

■ type name = C1 [of ty1] | . . . | Cn [of tyn]
■ Introduce a type called name
■ (fun x -> Ci x) : ty1 -> name
■ Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
■ Constructors are the basis of almost all pattern

matching (alt. destruction or, with some extra
machinery, elimination)

Datatypes

* 37

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

Enumeration Types

* 38

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
type weekday =
 Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday
 | Sunday

Enumeration Types

* 39

Functions over Enumerations

let day_after day =
 match day with
 | Monday -> Tuesday
 | Tuesday -> Wednesday
 | Wednesday -> Thursday
 | Thursday -> Friday
 | Friday -> Saturday
 | Saturday -> Sunday
 | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

Enumeration Types

* 40

Functions over Enumerations

let rec days_later n day =
 match n with
 | 0 -> day
 | _ ->
 if n > 0 then
 day_after (days_later (n - 1) day)
 else
 days_later (n + 7) day;;
val days_later : int -> weekday -> weekday = <fun>

Enumeration Types

* 41

Functions over Enumerations

let rec days_later n day =
 match n with
 | 0 -> day
 | _ ->
 if n > 0 then
 day_after (days_later (n - 1) day)
 else
 days_later (n + 7) day;;
val days_later : int -> weekday -> weekday = <fun>

Enumeration Types

* 42

Functions over Enumerations

let rec days_later n day =
 match n with
 | 0 -> day
 | _ ->
 if n > 0 then
 day_after (days_later (n - 1) day)
 else
 days_later (n + 7) day;;
val days_later : int -> weekday -> weekday = <fun>

Enumeration Types

* 43

Functions over Enumerations

let rec days_later n day =
 match n with
 | 0 -> day
 | _ ->
 if n > 0 then
 day_after (days_later (n - 1) day)
 else
 days_later (n + 7) day;;
val days_later : int -> weekday -> weekday = <fun>

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =

* 44

Your turn!

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with
 | Saturday -> true
 | Sunday -> true
 | _ -> false

* 45

Weekend days?

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with
 | _ -> true

* 46

In a better world …

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with
 | Saturday -> true
 | Sunday -> true
 | _ -> false

* 47

Other days?

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with
 | Saturday -> true
 | Sunday -> true
 | Monday -> false
 | Tuesday -> false …

* 48

More concisely?

Enumeration Types

Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
■ Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with
 | Saturday -> true
 | Sunday -> true
 | _ -> false

* 49

Yay

Enumeration Types

* 50

Enumeration Types in Languages!

(* Binary operators *)
 type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp

(* Unary operators *)
 type mon_op = HdOp | TlOp | FstOp | SndOp

Enumeration Types

51

 Disjoint Union Types

* 52

Disjoint Union Types as Variants

■ Disjoint union of types, with some possibly
occurring more than once

■ We can also add in some new singleton
elements

ty1 ty2 ty1

Disjoint Union Types

* 53

Disjoint Union Types

(* Different forms of identification *)
type id = DriversLicense of int
 | SocialSecurity of int | Name of string

let check_id id =
 match id with
 | DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe")

Disjoint Union Types

* 54

Disjoint Union Types

(* Different forms of identification *)
type id = DriversLicense of int
 | SocialSecurity of int | Name of string

let check_id id =
 match id with
 | DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe")

Disjoint Union Types

Problem

■ Create a type to represent the currencies for US,
UK, Europe and Japan

* 55

Your turn!

Disjoint Union Types

Problem

■ Create a type to represent the currencies for US,
UK, Europe and Japan

type currency =
 | Dollar of int (* US *)
 | Pound of int (* UK *)
 | Euro of int (* Europe *)
 | Yen of int (* Japan *)

* 56

How many constructors?

Disjoint Union Types

Problem

■ Create a type to represent the currencies for US,
UK, Europe and Japan

type currency =
 | Dollar of int (* US *)
 | Pound of int (* UK *)
 | Euro of int (* Europe *)
 | Yen of int (* Japan *)

* 57

What currencies?

Disjoint Union Types

Problem

■ Create a type to represent the currencies for US,
UK, Europe and Japan

type currency =
 | Dollar of int (* US *)
 | Pound of int (* UK *)
 | Euro of int (* Europe *)
 | Yen of int (* Japan *)

* 58

How to store values?

Disjoint Union Types

Problem

■ Create a type to represent the currencies for US,
UK, Europe and Japan

type currency =
 | Dollar of int (* US *)
 | Pound of int (* UK *)
 | Euro of int (* Europe *)
 | Yen of int (* Japan *)

* 59
Disjoint Union Types

* 60

Disjoint Unions in Languages!

 type const =
 BoolConst of bool
 | IntConst of int
 | FloatConst of float
 | StringConst of string
 | NilConst
 | UnitConst

Disjoint Union Types

* 61

 type const =
 BoolConst of bool
 | IntConst of int
 | FloatConst of float
 | StringConst of string
 | NilConst
 | UnitConst

■ How to represent 7 as a const?
■ Answer: IntConst 7

Disjoint Unions in Languages!

Disjoint Union Types

* 62

 type const =
 BoolConst of bool
 | IntConst of int
 | FloatConst of float
 | StringConst of string
 | NilConst
 | UnitConst

■ How to represent 7 as a const?
■ Answer: IntConst 7

Disjoint Unions in Languages!

Disjoint Union Types

63

 Please post questions on Piazza!

64

 Polymorphic Datatypes

* 65

Polymorphism in Variants

■ Variants can also be polymorphic
■ For example, the type 'a option gives us

something to represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

■ Used to encode partial functions
■ Often can replace the raising of an exception

Polymorphic Datatypes

* 66

Polymorphism in Variants

■ Variants can also be polymorphic
■ For example, the type 'a option gives us

something to represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

■ Used to encode partial functions
■ Often can replace the raising of an exception

Polymorphic Datatypes

* 67

Polymorphism in Variants

■ Variants can also be polymorphic
■ For example, the type 'a option gives us

something to represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

■ Used to encode partial functions
■ Often can replace the raising of an exception

Polymorphic Datatypes

* 68

Polymorphism in Variants

■ Variants can also be polymorphic
■ For example, the type 'a option gives us

something to represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

■ Used to encode partial functions
■ Often can replace the raising of an exception

Polymorphic Datatypes

* 69

Functions producing option

let rec first p list =
 match list with
 | [] -> None
 | (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1; 3; 4; 2; 5];;
- : int option = Some 4
first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes

* 70

Functions producing option

let rec first p list =
 match list with
 | [] -> None
 | (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1; 3; 4; 2; 5];;
- : int option = Some 4
first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes

* 71

Functions producing option

let rec first p list =
 match list with
 | [] -> None
 | (x :: xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1; 3; 4; 2; 5];;
- : int option = Some 4
first (fun x -> x > 5) [1; 3; 4; 2; 5];;
- : int option = None

Polymorphic Datatypes

* 72

Functions over option

let result_ok r =
 match r with
 | None -> false
 | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes

* 73

Functions over option

let result_ok r =
 match r with
 | None -> false
 | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes

* 74

Functions over option

let result_ok r =
 match r with
 | None -> false
 | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1; 3; 4; 2; 5]);;
- : bool = false

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn’t raise an exception
and works at all types of lists.

* 75

Your turn!

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn’t raise an exception
and works at all types of lists.

let hd list =
 match list with
 | [] -> None
 | (x::xs) -> Some x

* 76

Nil case?

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn’t raise an exception
and works at all types of lists.

let hd list =
 match list with
 | [] -> None
 | (x :: xs) -> Some x

* 77

Cons case?

Polymorphic Datatypes

Problem

■ Write a hd on lists that doesn’t raise an exception
and works at all types of lists.

let hd list =
 match list with
 | [] -> None
 | (x :: xs) -> Some x

* 78
Polymorphic Datatypes

* 79

Mapping over Variants

let optionMap f opt =
 match opt with
 | None -> None
 | Some x -> Some (f x);;
val optionMap :
 ('a -> 'b) -> 'a option -> 'b option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : int option = Some 2

Polymorphic Datatypes

* 80

Mapping over Variants

let optionMap f opt =
 match opt with
 | None -> None
 | Some x -> Some (f x);;
val optionMap :
 ('a -> 'b) -> 'a option -> 'b option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1; 3; 4; 2; 5]);;
- : int option = Some 2

Polymorphic Datatypes

* 81

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with
 | None -> noneVal
 | Some x -> someFun x;;
val optionFold :
 ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap :
 ('a -> 'b) -> 'a option -> 'b option = <fun>

Polymorphic Datatypes

* 82

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with
 | None -> noneVal
 | Some x -> someFun x;;
val optionFold :
 ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap :
 ('a -> 'b) -> 'a option -> 'b option = <fun>

Polymorphic Datatypes

83

 Please post questions on Piazza!

84

 Preview: Recursive Datatypes

* 85

Recursive Types as Variants

■ The type being defined may be a component
of itself

ty ty’ ty

Preview

* 86

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Preview

* 87

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Preview

* 88

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

let my_tree =
 Node (Node (Leaf 3, Leaf 6), Leaf (-7))

 Node

 Node Leaf (-7)

Leaf 3 Leaf 6 Preview

* 89

Recursive Data Types in Languages!

type exp =
 | VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp* exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

Preview

90

 How do we even represent the
 syntax of our language, and map
 over it to transform programs?

✓

91

 How to implement automatically in
 compiler, rather than by hand?

✓

92

 Please post questions on Piazza!

Takeaways

93

■ Variants let us represent custom datatypes
■ Can be polymorphic
■ Can be recursive
■ Can represent lists and trees
■ Can represent language syntax!

■ Can do two things with them:
■ construct
■ destruct (match, eliminate)

■ Can write program transformations,
interpreters, and compilers this way :)

Next Class

94

■ I will be back! Lecture will happen in person
■ EC1 is due, if interested (extra credit)
■ WA3XC also due, if interested (extra credit)
■ MP4 will be due next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

