
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Objectives for Today

2

■ Today, we will continue where we left off Tuesday
with continuation-passing style (CPS), which is
super useful for compilers and interpreters

■ We will learn how to write more interesting
functions in CPS, like how to nest continuations

■ We will then see how we can transform functions
written in OCaml into CPS

■ CPS transformation is useful and important!

3

 Questions from last time?

4

 Continuation-Passing Style (CPS)

* 5

Continuation Passing Style

■ Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result

■ CPS is useful as:
■ A compilation technique to implement

non-local control flow (especially useful in
interpreters)

■ A formalization of non-local control flow in
denotational semantics

■ A possible intermediate state in compiling
functional code

CPS

* 6

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

CPS

* 7

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

CPS

* 8

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

CPS

* 9

Example

■ Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

■ Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

CPS

Simple Functions Taking Continuations

■ Given a primitive operation, can convert it to
pass its result forward to a continuation

■ More examples:
let subk (x, y) k = k (x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k (x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k (x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

* 10
CPS

Simple Functions Taking Continuations

■ Given a primitive operation, can convert it to
pass its result forward to a continuation

■ More examples:
let subk (x, y) k = k (x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k (x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k (x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

* 11
CPS

Simple Functions Taking Continuations

■ Given a primitive operation, can convert it to
pass its result forward to a continuation

■ More examples:
let subk (x, y) k = k (x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k (x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k (x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

* 12
CPS

Simple Functions Taking Continuations

■ Given a primitive operation, can convert it to
pass its result forward to a continuation

■ More examples:
let subk (x, y) k = k (x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k (x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k (x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>
subk (22, 20) report;;

* 13
CPS

What happens?

14

 Nesting Continuations

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 (x + y) + z;;
val add_triple
 : int * int * int -> int = <fun>

* 15
Nesting

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 (x + y) + z;;
val add_triple
 : int * int * int -> int = <fun>

* 16
Nesting

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 let p = (x + y) in p + z;;
val add_triple
 : int * int * int -> int = <fun>

* 17
Nesting

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 let p = x + y in p + z;;
val add_triple
 : int * int * int -> int = <fun>

* 18
Nesting

Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 let p = x + y in p + z;;
val add_triple
 : int * int * int -> int = <fun>

* 19
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple (x, y, z) =
 let p = x + y in p + z;;
val add_triple
 : int * int * int -> int = <fun>

* 20
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 let p = x + y in p + z;; (* WIP *)
val add_triple
 : int * int * int -> int = <fun>

* 21
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 let p = x + y in p + z;; (* WIP *)
val add_triple
 : int * int * int -> int = <fun>

* 22
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 let p = x + y in p + z;; (* WIP *)
val add_triple
 : int * int * int -> int = <fun>

* 23
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple
 : int * int * int -> int = <fun>

* 24
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
 : int * int * int -> int = <fun>

* 25
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
 : int * int * int -> int = <fun>

* 26
Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 27

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 28

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 29

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 30

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 31

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;; int * int -> int = <fun>

* 32

What happens?

Nesting

Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk
 : int * int -> (int -> ’a) -> ’a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k :
 int * int * int -> (int -> 'a) -> 'a = <fun>_triple
add_triple_k (1, 2, 3) report;;
6
- : unit = ()

* 33
Nesting

34

 Questions so far?

Nesting

add_triple: A Different Order

* 35

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 x + (y + z);;

Nesting

add_triple: A Different Order

* 36

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 x + (y + z);;

Nesting

add_triple: A Different Order

* 37

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

Nesting

add_triple: A Different Order

* 38

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 ???;;

Your turn!

Nesting

add_triple: A Different Order

* 39

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 ???;;

Lift first computation to CPS

Nesting

add_triple: A Different Order

* 40

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) ???;;

Lift first computation to CPS

Nesting

add_triple: A Different Order

* 41

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) ???;;

What is the continuation?

Nesting

add_triple: A Different Order

* 42

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> ???);;

What is the continuation?

Nesting

add_triple: A Different Order

* 43

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> ???);;

Lift second computation to CPS

Nesting

add_triple: A Different Order

* 44

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) ??);;

Lift second computation to CPS

Nesting

add_triple: A Different Order

* 45

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) ??);;

What happens after the final addk?

Nesting

add_triple: A Different Order

* 46

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Done!

Nesting

add_triple: A Different Order

* 47

How do we write add_triple_k to use a different order?

let add_triple (x, y, z) =
 let r = y + z in x + r;;

let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

add_triple_k (1, 2, 3) report;;

Nesting

add_triple: Both Orders

* 48

How do we write add_triple_k to use a different order?

 (* (x + y) + z *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
 (* x + (y + z) *)
let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Nesting

add_triple: Both Orders

* 49

How do we write add_triple_k to use a different order?

 (* (x + y) + z *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
 (* x + (y + z) *)
let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Nesting

add_triple: Both Orders

* 50

How do we write add_triple_k to use a different order?

 (* (x + y) + z *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
 (* x + (y + z) *)
let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Nesting

add_triple: Both Orders

* 51

How do we write add_triple_k to use a different order?

 (* (x + y) + z *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
 (* x + (y + z) *)
let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Nesting

add_triple: Both Orders

* 52

How do we write add_triple_k to use a different order?

 (* (x + y) + z *)
let add_triple_k (x, y, z) k =
 addk (x, y) (fun p -> addk (p, z) k);;
 (* x + (y + z) *)
let add_triple_k (x, y, z) k =
 addk (y, z) (fun r -> addk (x, r) k);;

Nesting

53

 Questions so far?

54

 CPS and Recursion

* 55

Recursive Functions

■ Recall:
let rec factorial n =
 if n = 0 then
 1
 else
 n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

CPS and Recursion

* 56

Terminology

■ A function is in Direct Style when it returns its
result back to the caller.

■ A function is in Continuation Passing Style
when it, and every function call in it, passes its
result to another function.
■ Instead of returning the result to the caller, we

pass it forward to another function giving the
computation after the call.

CPS and Recursion

* 57

Recursive Functions

■ Direct Style:
let rec factorial n =
 if n = 0 then
 1
 else
 n * factorial (n - 1);;

To simplify transformation to CPS,
make order of execution explicit first.

CPS and Recursion

* 58

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 if n = 0 then
 1
 else
 n * factorial (n - 1);;

CPS and Recursion

* 59

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1
 else
 n * factorial (n - 1);;

CPS and Recursion

* 60

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1
 else
 n * factorial (n - 1);;

CPS and Recursion

* 61

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1
 else
 let r = factorial (n - 1) in
 n * r;;

CPS and Recursion

* 62

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1
 else
 let r = factorial (n - 1) in
 n * r;;

CPS and Recursion

* 63

Recursive Functions

■ (Refactoring) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1
 else
 let s = n - 1 in (* second computation *)
 let r = factorial s in (* third computation *)
 n * r;;

CPS and Recursion

* 64

Recursive Functions

■ (Refactored) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1 (* returned value *)
 else
 let s = n - 1 in (* second computation *)
 let r = factorial s in (* third computation *)
 n * r;; (* returned value *)

CPS and Recursion

* 65

Recursive Functions

■ (Refactored) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1 (* returned value *)
 else
 let s = n - 1 in (* second computation *)
 let r = factorial s in (* third computation *)
 n * r;; (* returned value *)

Rather than return
these values, we will
pass them forward.

CPS and Recursion

* 66

Recursive Functions

■ Continuation Passing Style:
let rec factorialk n k =
 eqk (n, 0) (fun b -> (* first computation *)
 if b then
 k 1 (* passed value *)
 else
 subk (n, 1) (fun s -> (* second computation *)
 factorialk s (fun r -> (* third computation *)
 timesk (n, r) k)));; (* passed value *)

Rather than return
these values, we will
pass them forward.

CPS and Recursion

* 67

Recursive Functions

■ Continuation Passing Style:
let rec factorialk n k =
 eqk (n, 0) (fun b -> (* first computation *)
 if b then
 k 1 (* passed value *)
 else
 subk (n, 1) (fun s -> (* second computation *)
 factorialk s (fun r -> (* third computation *)
 timesk (n, r) k)));; (* passed value *)

Rather than return
these values, we will
pass them forward.

CPS and Recursion

* 68

Recursive Functions

■ (Refactored) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1 (* returned value *)
 else
 let s = n - 1 in (* second computation *)
 let r = factorial s in (* third computation *)
 n * r;; (* returned value *)

CPS and Recursion

These stay in the
same order, but are
transformed to CPS.

* 69

Recursive Functions

■ Continuation Passing Style:
let rec factorialk n k =
 eqk (n, 0) (fun b -> (* first computation *)
 if b then
 k 1 (* passed value *)
 else
 subk (n, 1) (fun s -> (* second computation *)
 factorialk s (fun r -> (* third computation *)
 timesk (n, r) k)));; (* passed value *)

These stay in the
same order, but are
transformed to CPS.

CPS and Recursion

* 70

Recursive Functions

■ Continuation Passing Style:
let rec factorialk n k =
 eqk (n, 0) (fun b -> (* first computation *)
 if b then
 k 1 (* passed value *)
 else
 subk (n, 1) (fun s -> (* second computation *)
 factorialk s (fun r -> (* third computation *)
 timesk (n, r) k)));; (* passed value *)

CPS and Recursion

* 71

Recursive Functions

■ Continuation Passing Style:
let rec factorialk n k =
 eqk (n, 0) (fun b -> (* first computation *)
 if b then
 k 1 (* passed value *)
 else
 subk (n, 1) (fun s -> (* second computation *)
 factorialk s (fun r -> (* third computation *)
 timesk (n, r) k)));; (* passed value *)

How to transform
recursive call?

CPS and Recursion

* 72

Recursive Functions

■ (Refactored) Direct Style:
let rec factorial n =
 let b = (n = 0) in (* first computation *)
 if b then
 1 (* returned value *)
 else
 let s = n - 1 in (* second computation *)
 let r = factorial s in (* third computation *)
 n * r;; (* returned value *)

How to transform
recursive call?

CPS and Recursion

* 73

Recursive Functions

■ To transform a recursive call to CPS, must build
intermediate continuation to:
■ take recursive value,
■ build it to final result, and
■ pass it to final continuation.

 let s =
 n - 1 in (* second computation *)
 let r = factorial s in
 n * r

CPS and Recursion

* 74

Recursive Functions

■ To transform a recursive call to CPS, must build
intermediate continuation to:
■ take recursive value,
■ build it to final result, and
■ pass it to final continuation.

 let s =
 n - 1 in (* second computation *)
 let r = factorial s in
 n * r

CPS and Recursion

* 75

Recursive Functions

■ To transform a recursive call to CPS, must build
intermediate continuation to:
■ take recursive value,
■ build it to final result, and
■ pass it to final continuation.

 let s =
 n - 1 in (* second computation *)
 let r = factorial s in
 n * r

CPS and Recursion

* 76

Recursive Functions

■ To transform a recursive call to CPS, must build
intermediate continuation to:
■ take recursive value,
■ build it to final result, and
■ pass it to final continuation.

 let s =
 n - 1 in (* second computation *)
 factorialk s (fun r ->
 timesk (n, r) k)

CPS and Recursion

77

 Questions so far?

CPS and Recursion

Example: CPS for length

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

* 78
CPS and Recursion

Example: CPS for length

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> let r = length bs in 1 + r

What is the let-expanded version of this?

* 79
CPS and Recursion

Example: CPS for length

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> let r = length bs in 1 + r

What is the CPS version of this?

* 80
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> 0
 | (a :: bs) -> let r = length bs in 1 + r

What is the CPS version of this?

* 81
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> let r = length bs in 1 + r

What is the CPS version of this?

* 82
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> let r = lengthk bs in 1 + r

What is the CPS version of this?

* 83
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> let r = lengthk bs in 1 + r

What is the CPS version of this?

* 84
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> 1 + r)

What is the CPS version of this?

* 85
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> 1 + r)

What is the CPS version of this?

* 86
CPS and Recursion

Example: CPS for length

let rec lengthk list k = (* WIP *)
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

What is the CPS version of this?

* 87
CPS and Recursion

Example: CPS for length

let rec lengthk list k =
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

lengthk [2; 4; 6; 8] report;;
4
- : unit = ()

* 88
CPS and Recursion

Example: CPS for length

let rec lengthk list k =
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

lengthk [2; 4; 6; 8] report;;
4
- : unit = ()

* 89
CPS and Recursion

Example: CPS for length

let rec lengthk list k =
 match list with
 | [] -> k 0
 | (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

lengthk [2; 4; 6; 8] report;;
4
- : unit = ()

* 90
CPS and Recursion

* 91

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> x + sum xs;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

* 92

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> x + sum xs;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

* 93

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> let r = sum xs in x + r;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

* 94

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> let r = sum xs in x + r;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

* 95

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> let r = sum xs in x + r;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

* 96

CPS for sum

let rec sum list =
 match list with
 | [] -> 0
 | x :: xs -> let r = sum xs in x + r;;
val sum : int list -> int = <fun>
let rec sumk list k =
 match list with
 | [] -> k 0
 | x :: xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion

97

 CPS and Higher-Order Functions

CPS for Higher Order Functions

■ In CPS, every function takes a continuation to
receive its result

■ Accordingly:
■ Functions passed as arguments take

continuations
■ Functions returned as results take

continuations
■ CPS version of higher-order functions must expect

input functions to take continuations

* 98
CPS and HOFs

Example: all

let rec all (p, l) =
 match l with
 | [] -> true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;
val all : ('a -> bool) -> 'a list -> bool = <fun>

* 99
CPS and HOFs

Example: all

let rec allk (p, l) k = (* WIP *)
 match l with
 | [] -> true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;

* 100
CPS and HOFs

Example: all

let rec allk (p, l) k = (* WIP *)
 match l with
 | [] -> ?? true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;

* 101

What do we do with
the returned value?

CPS and HOFs

Example: all

let rec allk (p, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;

* 102

We pass it forward.

CPS and HOFs

Example: all

let rec allk (p, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;

* 103

What do we do here?

CPS and HOFs

Example: all

let rec allk (p, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 let b = p x in
 if b then
 all (p, xs)
 else
 false;;

* 104

We need to assume that
input function p has
been transformed to
CPS already.

CPS and HOFs

Example: all

let rec allk (pk, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 pk x (fun b ->
 if b then
 all (p, xs)
 else
 false);;

* 105

We need to assume that
input function pk has
been transformed to
CPS already.

CPS and HOFs

Example: all

let rec allk (pk, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 pk x (fun b ->
 if b then
 all (p, xs)
 else
 false);;

* 106

Now we can transform
these to CPS in the
standard way.

CPS and HOFs

Example: all

let rec allk (pk, l) k = (* WIP *)
 match l with
 | [] -> k true
 | x :: xs ->
 pk x (fun b ->
 if b then
 allk (pk, xs) k
 else
 k false);;

* 107

Now we can transform
these to CPS in the
standard way.

CPS and HOFs

Example: all

let rec allk (pk, l) k =
 match l with
 | [] -> k true
 | x :: xs ->
 pk x (fun b ->
 if b then
 allk (pk, xs) k
 else
 k false);;
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
 (bool -> 'b) -> 'b = <fun>
* 108

CPS and HOFs

Example: all

let rec allk (pk, l) k =
 match l with
 | [] -> k true
 | x :: xs ->
 pk x (fun b ->
 if b then
 allk (pk, xs) k
 else
 k false);;
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
 (bool -> 'b) -> 'b = <fun>
* 109

CPS and HOFs

110

 Questions so far?

111

 CPS Transformation

* 112

CPS Transformation

■ Step 1: Add continuation argument to any
function definition
■ let f arg = e ⇒ let f arg k = e
■ Idea: Every function takes an extra parameter

saying where the result goes
■ Step 2: A simple expression in tail position should

be passed to a continuation instead of returned
■ a ⇒ k a
■ Assuming a is a constant or variable.
■ “Simple” = “No available function calls.”

CPS Transformation

* 113

CPS Transformation

■ Step 1: Add continuation argument to any
function definition
■ let f arg = e ⇒ let f arg k = e
■ Idea: Every function takes an extra parameter

saying where the result goes
■ Step 2: A simple expression in tail position should

be passed to a continuation instead of returned
■ a ⇒ k a
■ Assuming a is a constant or variable.
■ “Simple” = “No available function calls.”

CPS Transformation

* 114

CPS Transformation

■ Step 3: Pass the current continuation to every
function call in tail position
■ f arg ⇒ f arg k
■ The function “isn’t going to return,” so we need to

tell it where to put the result.
■ Step 4: Each function call not in tail position needs

to be converted to take a new continuation
(containing the old continuation as appropriate)
■ op (f arg) ⇒ f arg (fun r -> k (op r))
■ op represents a primitive operation
■ g (f arg) ⇒ f arg (fun r -> g r k)

CPS Transformation

* 115

CPS Transformation

■ Step 3: Pass the current continuation to every
function call in tail position
■ f arg ⇒ f arg k
■ The function “isn’t going to return,” so we need to

tell it where to put the result.
■ Step 4: Each function call not in tail position needs

to be converted to take a new continuation
(containing the old continuation as appropriate)
■ op (f arg) ⇒ f arg (fun r -> k (op r))
■ op represents a primitive operation
■ g (f arg) ⇒ f arg (fun r -> g r k)

CPS Transformation

* 116

Example

Before:
let rec sum lst =
match lst with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
 (+) x (sum xs);;

After:
let rec sumk lst k = (* 1 *)
match lst with
| [] -> k 0 (* 2 *)
| 0 :: xs -> sumk xs k (* 3 *)
| x :: xs -> (* 4 *)
 sumk xs (fun r -> k ((+) x r));;

CPS Transformation

* 117

Example

Before:
let rec sum lst =
match lst with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
 (+) x (sum xs);;

After:
let rec sumk lst k = (* 1 *)
match lst with
| [] -> k 0 (* 2 *)
| 0 :: xs -> sumk xs k (* 3 *)
| x :: xs -> (* 4 *)
 sumk xs (fun r -> k ((+) x r));;

CPS Transformation

* 118

Example

Before:
let rec sum lst =
match lst with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
 (+) x (sum xs);;

After:
let rec sumk lst k = (* 1 *)
match lst with
| [] -> k 0 (* 2 *)
| 0 :: xs -> sumk xs k (* 3 *)
| x :: xs -> (* 4 *)
 sumk xs (fun r -> k ((+) x r));;

CPS Transformation

* 119

Example

Before:
let rec sum lst =
match lst with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
 (+) x (sum xs);;

After:
let rec sumk lst k = (* 1 *)
match lst with
| [] -> k 0 (* 2 *)
| 0 :: xs -> sumk xs k (* 3 *)
| x :: xs -> (* 4 *)
 sumk xs (fun r -> k ((+) x r));;

CPS Transformation

* 120

Example

Before:
let rec sum lst =
match lst with
| [] -> 0
| 0 :: xs -> sum xs
| x :: xs ->
 (+) x (sum xs);;

After:
let rec sumk lst k = (* 1 *)
match lst with
| [] -> k 0 (* 2 *)
| 0 :: xs -> sumk xs k (* 3 *)
| x :: xs -> (* 4 *)
 sumk xs (fun r -> k ((+) x r));;

CPS Transformation

121

 Questions so far?

122

 Other Applications

Other Uses for Continuations

■ CPS designed to preserve order of evaluation
■ Continuations used to express order of evaluation
■ Can be used to change order of evaluation
■ Implements:

■ Exceptions and exception handling
■ Co-routines
■ (pseudo, aka green) threads

* 123
 Other Applications

Other Uses for Continuations

■ CPS designed to preserve order of evaluation
■ Continuations used to express order of evaluation
■ Can be used to change order of evaluation
■ Implements:

■ Exceptions and exception handling
■ Co-routines
■ (pseudo, aka green) threads

* 124
 Other Applications

* 125

Exceptions - Example

exception Zero;;
exception Zero
let rec mul_aux list =
 match list with
 | [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero else x * mul_aux xs;;
val mul_aux : int list -> int = <fun>

 Other Applications

* 126

Exceptions - Example

exception Zero;;
exception Zero
let rec mul_aux list =
 match list with
 | [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero else x * mul_aux xs;;
val mul_aux : int list -> int = <fun>

 Other Applications

* 127

Exceptions - Example

let list_mult list =
 try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
mul_aux [7;4;0];;
Exception: Zero.

 Other Applications

* 128

Exceptions - Example

let list_mult list =
 try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
mul_aux [7;4;0];;
Exception: Zero.

 Other Applications

* 129

Exceptions - Example

let list_mult list =
 try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
mul_aux [7;4;0];;
Exception: Zero.

 Other Applications

* 130

Exceptions - Example

let list_mult list =
 try mul_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
mul_aux [7;4;0];;
Exception: Zero.

 Other Applications

* 131

Exceptions

■ When an exception is raised
■ The current computation is aborted
■ Control is “thrown” back up the call stack

until a matching handler is found
■ All the intermediate calls waiting for a return

values are thrown away

 Other Applications

* 132

Implementing Exceptions

let multkp (m, n) k =
 let r = m * n in
 (print_string "product result: ";
 print_int r; print_string "\n";
 k r);;
val multkp : int * int -> (int -> 'a) -> 'a = <fun>

 Other Applications

* 133

Implementing Exceptions

let rec mul_aux list k kexcp =
 match list with
 | [] -> k 1
 | x :: xs ->
 if x = 0 then
 kexcp 0
 else
 mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
let list_multk list k = mul_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

 Other Applications

Exception Handler

* 134

Implementing Exceptions

let rec mul_aux list k kexcp =
 match list with
 | [] -> k 1
 | x :: xs ->
 if x = 0 then
 kexcp 0
 else
 mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
let list_multk list k = mul_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

 Other Applications

Raise Exception

Exception Handler

* 135

Implementing Exceptions

let rec mul_aux list k kexcp =
 match list with
 | [] -> k 1
 | x :: xs ->
 if x = 0 then
 kexcp 0
 else
 mul_aux xs (fun r -> multkp (x, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
let list_multk list k = mul_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

 Other Applications

* 136

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

 Other Applications

* 137

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

 Other Applications

138

 Questions?

Takeaways

139

■ We saw how to transform functions written in
direct style to functions written in
continuation-passing style (CPS), which is
super useful for compilers and interpreters

■ We also saw how to use continuations to implement
exceptions—one of many features we can
implement with continuations

Next Class

140

■ I will be away! This absence is actually a planned
absence.

■ I will record the lecture ahead of time and post
it for you all to watch.

■ I will announce when it is ready.
■ There will not be an in-person lecture.
■ I will also miss office hours, but I will pay very

close attention to Piazza.
■ I will post (extra) extra credit today. (Please don’t

let it distract you from the midterm.)

