+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Objectives for Today

m Today, we will continue where we left off Tuesday
with continuation-passing style (CPS), which is
super useful for compilers and interpreters

m We will learn how to write more interesting
functions in CPS, like how to nest continuations

m We will then see how we can transform functions
written in OCaml into CPS

m CPS transformation is useful and important!

! Questions from last time?

! Continuation-Passing Style (CPS)

* Continuation Passing Style

m Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result
m CPS is useful as:
= A compilation technique to implement
non-local control flow (especially useful in
interpreters)

m A formalization of non-local control flow in
denotational semantics

m A possible intermediate state in compiling
functional code CPS

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

CPS

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k =k (a + b);;
val addk : int * int -> (int -> ‘a) -> ‘a = <fun>

CPS

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k =k (a + b);;

val addk : int * int -> (int -> ‘a) -> ‘a = <fun>
addk (22, 20) report;;

CPS

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:
let addk (a, b) k =k (a + b);;
val addk : int * int -> (int -> ‘a) -> ‘a = <fun>
addk (22, 20) report;;
42
- unit = ()
CPS

* Simple Functions Taking Continuations

m Given a primitive operation, can convert it to
pass its result forward to a continuation

CPS

10

* Simple Functions Taking Continuations

m Given a primitive operation, can convert it to
pass its result forward to a continuation

m More examples:

let subk (X, y) k = k(X -vy);;

val subk : int * int -> (int = <fun>
letegk (x, y) K = k(X =Y);;

val egk : 'a * 'a -> (bool = <fun>

let timesk (X, y) Kk =k (X *vy);;

val timesk : int * int int = <fun>

CPS

11

* Simple Functions Taking Continuations

m Given a primitive operation, can convert it to
pass its result forward to a continuation

m More examples:

letsubk (X, y) k=k (x-Y);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>
letegk (x, y) k =k (x =y);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (x, y) k = k (x *y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

CPS

12

* Simple Functions Taking Continuations

m Given a primitive operation, can convert it to
pass its result forward to a continuation

m More examples:

letsubk (X, y) k=k (x-Y);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>
letegk (x, y) k =k (x =y);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (x, y) k = k (x *y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>
subk (22, 20) report;; [What happens?]

CPS

13

! Nesting Continuations

14

* Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =
(x +y)+2z;
val add_triple
:int * int * int -> int = <fun>

Nesting N

* Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =
(x+vy)+7z;
val add_triple
:int * int * int -> int = <fun>

Nesting .

* Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =
letp=(Xx+y)inp + z;
val add_triple
:int * int * int -> int = <fun>

Nesting -

* Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =
letp=x+yinp +7z;
val add_triple
:int * int * int -> int = <fun>

Nesting N

* Nesting Continuations

(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =
letp=xX+yinp+ z;
val add_triple
:int * int * int -> int = <fun>

Nesting N

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple (X, y, z) =

letp=xX+yinp+ z;

val add_triple

:int * int * int -> int = <fun>

Nesting .

* Nesting Continuations

let addk (@, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (X, y, 2) k =
letp=x+yinp+2z; (*“WIP *)

Nesting N

* Nesting Continuations

let addk (@, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x,y, 2) k =
letp=x+yinp+z; (*WIP*)

Nesting .

* Nesting Continuations

let addk (@, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x,y, 2) k =
etp=x+yinp+2z,; (*WIP*)

Nesting .

* Nesting Continuations

let addk (@, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x,y, 2) k =
addk (x, y) (fun p -> addk (p, z) k);;

Nesting N

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (X, y, 2) k =
addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>

Nesting .

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =
addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>

Nesting .

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (X, y, 2) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting .

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting .

* Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting .

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (X, y, Zz) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting 0

* Nesting Continuations

let addk (a, b) k =k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x,y, 2) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting .

* Nesting Continuations

let addk (a, b) k = k (a + b);;
val addk

: int * int -> (int -> ‘a) -> 'a = <fun>
(* Asked last class: can we compose these? Yes *)
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_Kk :

int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;; [What happens?]

Nesting "

i Nesting Continuations

letaddk (a, b) k =k (a + b);;
val addk
: int * int -> (int -> ‘a) -> 'a = <fun>

let add_triple_k (x, y, z) k =
addk (x, y) (fun p -> addk (p, z) k):;
val add_triple_Kk :
int * int * int -> (int -> 'a) -> 'a = <fun>
add_triple_k (1, 2, 3) report;;
6
- 1 unit = ()
Nesting .

! Questions so far?

Nesting .,

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
X+ (Y + 2);;

Nesting N

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
X+ (y + 2);;

Nesting y

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+2zinx+r;;

Nesting -

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (X, y, z) k =
222

[Your turn!]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zZinx+r;;

let add_triple_k (X, y, z) k =
222

| Lift first computation to CPS |

Nesting o

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+2zinx+r;;

let add_triple_k (x, y, z) k =
addk (y, z) ?2??;;

| Lift first computation to CPS |

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (x, y, z) k =
addk (y, z) 2??;;

[What is the continuation?]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (x, y, z) k =
addk (y, z) (fun r -> 2??);;

[What is the continuation?]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx +r;;

let add_triple_k (x, y, z) k =
addk (y, z) (fun r -> 2??);;

[Lift second computation to CPS]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx +r;;

let add_triple_k (x, y, z) k =
addk (y, z) (fun r -> addk (%, r) ?2?);;

[Lift second computation to CPS]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (x, y, z) k =
addk (y, z) (fun r -> addk (x, r) ?2?);;

[What happens after the final addk?]

Nesting N

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (X, y, z2) k =
addk (y, z) (fun r -> addk (X, r) k);;

[Done!]

Nesting .

* add_triple: A Different Order

How do we write add_triple_k to use a different order?

let add_triple (X, y, z) =
letr=y+zinx+r;;

let add_triple_k (X, y, z2) k =
addk (y, z) (fun r -> addk (X, r) k);;

add_triple_k (1, 2, 3) report;;

Nesting .

* add_triple: Both Orders

How do we write add_triple_k to use a different order?

let add_triple_k (X, y, z) k =
addk (x, y) (fun p -> addk (p, z) k)

let add_triple_k (X, y, z) k =
addk (y, z) (fun r -> addk (x, r) k)

Nesting .

* add_triple: Both Orders

How do we write add_triple_k to use a different order?

let add_triple_k (X, y, z) k =
addk (x, y) (fun p -> addk (p, 2) k)

let add_triple_k (X, y, z) k =
addk (y, z) (fun r -> addk (X, r) k)

Nesting .

* add_triple: Both Orders

How do we write add_triple_k to use a different order?

let add_triple_k (X, y, z) k =
addk (x, y) (fun p -> addk (p, z) k)

let add_triple_k (X, y, z) k =
addk (y, z) (fun r -> addk (X, r) k)

Nesting -

* add_triple: Both Orders

How do we write add_triple_k to use a different order?

let add_triple_k (X, y, z) k =
addk (x, y) (fun p -> addk (p, z) k)

let add_triple_k (X, y, z) k =
addk (y, z) (fun r -> addk (X, r) k)

Nesting n

* add_triple: Both Orders

How do we write add_triple_k to use a different order?

let add_triple_k (X, y, z) k =
addk (x, y) (fun p -> addk (p, z) k)

let add_triple_k (X, y, z) k =
addk (y, z) (fun r -> addk (x, r) k)

Nesting -

! Questions so far?

53

! CPS and Recursion

54

* Recursive Functions

= Recall:
let rec factorial n =
if n = 0 then
1
else
n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-1 int = 120

CPS and Recursion .

ﬁ Terminology

m A function is in Direct Style when it returns its
result back to the caller.

m A function is in Continuation Passing Style
when it, and every function call in it, passes its
result to another function.

m Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

CPS and Recursion ,

* Recursive Functions

= Direct Style:
let rec factorial n =

if n = 0 then
1 To simplify transformation to CPS,
else make order of execution explicit first.

n * factorial (n - 1);;

CPS and Recursion _

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
if n = 0 then
1
else
n * factorial (n - 1);;

CPS and Recursion .

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
letb = (n =0)In (* first computation *)
if b then
1
else
n * factorial (n - 1);;

CPS and Recursion S

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
letb = (n =0)in (* first computation *)
if b then
1
else
n * factorial (n - 1);;

CPS and Recursion o

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
letb=(n=0)in
if b then
1
else
let r = factorial (n-1) in
n*ry,

CPS and Recursion N

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
letb = (n =0)in (* first computation *)
if b then
1
else
let r = factorial (n - 1) in
n*rj,

CPS and Recursion o

* Recursive Functions

m (Refactoring) Direct Style:
let rec factorial n =
letb = (n =0)in (* first computation *)
if b then
1
else
lets=n-1In (" second computation *)
let r = factorial s in (* third computation *)
n*rj,

CPS and Recursion .

* Recursive Functions

m (Refactored) Direct Style:
let rec factorial n =

letb = (n = 0)in (* first computation *)

if b then

1 (* returned value *)

else
ets=n-1in (* second computation *)
et r = factorial s in (* third computation *)
n *r;; (* returned value *)

CPS and Recursion N

* Recursive Functions

m (Refactored) Direct Style:
let rec factorial n =

if b then ‘Rather than return |

1 (*[returned] value *) | these values, we will
else _pass them forward. y

n * r;; ({ returned|value *)

CPS and Recursion .

* Recursive Functions

m Continuation Passing Style:
let rec factorialk n k =

if b then ‘Rather than return |

k 1 (*[passed]value *) these values, we will
else _pass them forward. y

timesk (n, r) k)));; (*|passed|value *)

CPS and Recursion -

* Recursive Functions

m Continuation Passing Style:
let rec factorialk n k =

if b then ‘Rather than return |

k1 (*[passed]value *) these values, we will
else _pass them forward. y

timesk (n, r) k)));; (*{passed|value *)

CPS and Recursion -

* Recursive Functions

m (Refactored) Direct Style:
let rec factorial n =
letb=(n=0)Iin (*omputation *)

(These stay in the
same order, but are
\transformed to CPS. y

N

let s = n -1 in (*|secondjcomputation *)
let r = factorial s in (*l third |computation *)

CPS and Recursion o

* Recursive Functions

m Continuation Passing Style:
let rec factorialk n k =
eqk (n, 0) (fun b -> (*(first fomputation *)

(These stay in the
same order, but are
\transformed to CPS. y

N

subk (n, 1) (fun s -> (*|second |computation *)
factorialk s (fun r -> (*[third fomputation *)

CPS and Recursion .

* Recursive Functions

m Continuation Passing Style:
let rec factorialk n k =
egk (n, 0) (fun b -> (* first computation *)
if b then
k 1 (* passed value *)
else
subk (n, 1) (fun s -> (* second computation *)
factorialk s (fun r -> (* third computation *)
timesk (n, r) k)));; (* passed value *)

CPS and Recursion .

* Recursive Functions

m Continuation Passing Style:
let rec factorialk n k =

How to transform
recursive call?

| factorialk|s (fun r -> (* third computation *)
timesk (n, r) k)));; (* passed value *)

CPS and Recursion .

* Recursive Functions

m (Refactored) Direct Style:
let rec factorial n =

How to transform
recursive call?

let r =[factorial|s in (* third computation *)
n *r;: (* returned value *)

CPS and Recursion .

* Recursive Functions

m To transform a recursive call to CPS, must build
intermediate continuation to:

m take recursive value,
m build it to final result, and
m pass it to final continuation.

let r = factorial s in
n*r

CPS and Recursion .

* Recursive Functions

m To transform a recursive call to CPS, must build
intermediate continuation to:

m take recursive value,
m build it to final result, and
m pass it to final continuation.

IetE]= factorial s in
n*r

CPS and Recursion N

* Recursive Functions

m To transform a recursive call to CPS, must build
intermediate continuation to:

m take recursive value,
= build it to final result, and
m pass it to final continuation.

let r = factorial s in
n*r|

CPS and Recursion .

* Recursive Functions

m To transform a recursive call to CPS, must build
intermediate continuation to:

m take recursive value,
m build it to final result, and
m pass it to final continuation.

factorialk s (fun r ->
[timesk (n, r) k)

CPS and Recursion ,

! Questions so far?

CPS and Recursion ,

* Example: CPS for length

let rec length list =
match list with
| [1->0

| (@ :: bs)->1 + length bs

[What is the let-expanded version of this?]

CPS and Recursion .

* Example: CPS for length

let rec length list =
match list with
| [1->0

| (@::bs)->letr=Ilengthbsinl +r

[What is the let-expanded version of this?]

CPS and Recursion 79

* Example: CPS for length

let rec length list =
match list with
| [1->0

| (@::bs)->letr=lengthbsinl +r

[What Is the CPS version of this?]

CPS and Recursion “

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| [1->0

| (@::bs)->letr=lengthbsinl +r

[What Is the CPS version of this?]

CPS and Recursion "

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (@::bs)->letr=lengthbsinl +r

[What Is the CPS version of this?]

CPS and Recursion .

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (@ ::bs)->letr =lengthk bsinl +r

[What Is the CPS version of this?]

CPS and Recursion .

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (@::bs)->letr=Ilengthkbsinl+r

[What Is the CPS version of this?]

CPS and Recursion N

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (@ :: bs) -> lengthk bs (funr->1 +r)

[What Is the CPS version of this?]

CPS and Recursion .

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (@ :: bs) -> lengthk bs (funr->1+r)

[What Is the CPS version of this?]

CPS and Recursion "

* Example: CPS for length

let rec lengthk list k = (* WIP *)
match list with
| []-> kO

| (a :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

[What Is the CPS version of this?]

CPS and Recursion .

* Example: CPS for length

let rec lengthk list k =
match list with
| [1-> kO

| (@ :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

CPS and Recursion .

* Example: CPS for length

let rec lengthk list k =
match list with
| [1-> kO

| (@ :: bs) -> lengthk bs (fun r -> addk (r, 1) k)

lengthk [2; 4; 6; 8] report;;

CPS and Recursion o

* Example: CPS for length

let rec lengthk list k =
match list with
| [1-> kO

| (@ :: bs) -> lengthk bs (fun r -> addk (r, 1) k)
lengthk [2; 4; 6; 8] report;;

4
- unit = ()

CPS and Recursion o

* CPS for sum

let rec sum list =
match list with
|I[]->0

| X 11 XS -> X + sum Xxs;;
val sum : int list -> int = <fun>

CPS and Recursion o

* CPS for sum

let rec sum list =
match list with
|I[]->0

| X 11 XS -> X + sum XS;;
val sum : int list -> int = <fun>

CPS and Recursion .

* CPS for sum

let rec sum list =
match list with
|I[]->0

| Xiixs->letr=sumxsinx +r;;
val sum : int list -> int = <fun>

CPS and Recursion .

* CPS for sum

let rec sum list =
match list with
|I[]->0

| X ;i xs->letr=sumxsin X + r;;
val sum : int list -> int = <fun>

CPS and Recursion N

* CPS for sum

let rec sum list =
match list with
|I[]->0

| X ;i xs->letr=sumxsin X + r;;
val sum : int list -> int = <fun>
let rec sumk list k =

match list with

|[]->kO

| X 12 xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion N

b3

* CPS for sum

let rec sum list =
match list with
|I[]->0

| X ;i xs->letr=sumxsin X + r;;
val sum : int list -> int = <fun>
let rec sumk list k =

match list with

|[]1->kO0

| X 11 xs -> sumk xs (fun r -> addk (x, r) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>

CPS and Recursion o

b3

! CPS and Higher-Order Functions

97

ﬁ CPS for Higher Order Functions

m In CPS, every function takes a continuation to
receive its result
m Accordingly:

m Functions passed as arguments take
continuations

m Functions returned as results take
continuations

m CPS version of higher-order functions must expect
input functions to take continuations

CPS and HOFs

98

* Example: all

#letrecall (p, 1) =
match | with
| []-> true

| X i1 XS ->
letb =p xin
if b then
all (p, xs)
else
false;;
val all : ('fa -> bool) -> "a list -> bool = <fun>

CPS and HOFs

99

* Example: all

let rec allk (p, 1) k = (* WIP *)
match | with
| []-> true

| X 11 XS ->
letb =p xin
if b then
all (p, xs)
else
false;;

CPS and HOFs 1

00

* Example: all

let rec allk (p, 1) k = (* WIP *)

match | with

| []-> ?? true What do we do with
the returned value?

| X 11 Xs ->
letb = p xin
if b then
all (p, xs)
else
false;;

CPS and HOFs 1

01

* Example: all

let rec allk (p, 1) k = (* WIP *)
match | with

| [1-> ktrue [We pass it forward.]
| X 11 XS ->
letb =p xin
if b then
all (p, xs)
else
false;;

CPS and HOFs 1

02

* Example: all

let rec allk (p, 1) k = (* WIP *)
match | with
| [1-> k true

| X 11 XS ->
letb = p xin [What do we do here?]
if b then
all (p, xs)
else
false;;

CPS and HOFs 1

03

* Example: all

letrecallk (p,) k =

match | with
| []-> Kk true ~
N We need to assume that
| X i xs-> input function p has
letb = p xin been transformed to
if b then \CPS already. y
all (p, xs)
else
false;;

CPS and HOFs 1

04

* Example: all

let rec allkk (pk, 1) k =
match | with

| []-> Kk true N
N We need to assume that
| X i xs -> input function pk has
pk x (fun b -> been transformed to
if b then \CPS already.

all (p, xs)
else

false);;

J

. CPS and HOFs

05

* Example: all

let rec allk (pk, 1) k = (* WIP *)

match | with
| [] -> k true

| X 11 XS ->
pk x (fun b ->
if b then
all (p, xs)
else
false);;

r

Now we can transform
these to CPS in the
\standard way.

~\

CPS and HOFs 1

06

* Example: all

let rec allk (pk, 1) k = (* WIP *)

match | with
| [] -> k true

| X 11 XS ->
pk x (fun b ->
if b then
allk (pk, xs) k
else
k false);;

(
Now we can transform

these to CPS in the

standard way.
.

~\

CPS and HOFs 1

07

i Example: all

let rec allk (pk, 1) k =
match | with
| []-> Kk true

| X i1 XS ->
pk X (fun b ->
if b then
allk (pk, xs) k
else
k false);;
val allk : (*a => (bool -> 'b) -> 'b) * 'a list ->
) (bool -> 'b) -> 'b = <fun> CPS and HOFs

08

* Example: all

let rec allk (pk, I) k =
match | with
| []-> Kk true

| X i1 XS ->
pk X (fun b ->
if b then
allk (pk, xs) k
else
k false);;
val allk : (fa -> (bool -> 'b) -> 'b) * 'a list ->
) (bool -> 'b) -> 'b = <fun> CPS and HOFs

09

! Questions so far?

110

! CPS Transformation

111

* CPS Transformation

m Step 1: Add continuation argument to any
function definition

mletfarg=e = letfargk =€

m Idea: Every function takes an extra parameter
saying where the result goes

CPS Transformation o

ﬁ CPS Transformation

m Step 1: Add continuation argument to any
function definition

mletfarg=e = letfargk = e

m Idea: Every function takes an extra parameter
saying where the result goes

m Step 2: A simple expression in tail position should
be passed to a continuation instead of returned

ma—>ka
m Assuming a is a constant or variable.
m Simple” = “"No available function calls.”

CPS Transformation o

* CPS Transformation

m Step 3: Pass the current continuation to every
function call in tail position

m farg=> farg k

m The function “isnt going to return,” so we need to
tell it where to put the result.

CPS Transformation »

ﬁ CPS Transformation

m Step 3: Pass the current continuation to every
function call in tail position

m farg=> farg k

m The function “isnt going to return,” so we need to
tell it where to put the result.
m Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

m op(farg) = farg (funr-> k (op r))
m Op represents a primitive operation

m g(farg) = farg (funr->grk)

CPS Transformation e

* Example

Before: After:
let rec sum Ist =
match Ist with

[1->0
0 :: XS -> sum XS
X i XS ->

(+) X (sum xs);;

CPS Transformation e

* Example

Before: After:
let rec sum Ist = let rec sumk Ist k =
match Ist with
[1->0
0 :: XS -> sum XS
X i XS ->
(+) X (sum xs);;

CPS Transformation "

* Example

Before: After:
let rec sum Ist = let rec sumk Ist k =
match Ist with match Ist with
[1->0 | []1-> k0
0 :: XS -> sum XS
X i XS ->

(+) X (sum xs);;

CPS Transformation e

* Example

Before: After:

let rec sum Ist = let rec sumk Ist k =

match Ist with match Ist with
[]->0 | []1->kO

0::xs->sumxs | 0::xs->sumkxsk
X 1t XS ->
(+) X (sum xs);;

CPS Transformation .

* Example

Before: After:

let rec sum Ist = let rec sumk Ist k =

match Ist with match Ist with
[1->0 [1-> kO
0::xs->sumxs | O::xs->sumk xs k
X i XS -> X i XS ->

(+) x (sum xs):; sumk xs (fun r-> k ((+) xr));;

CPS Transformation -

! Questions so far?

121

! Other Applications

122

* Other Uses for Continuations

CPS designed to preserve order of evaluation
Continuations used to express order of evaluation
Can be used to change order of evaluation
Implements:

m Exceptions and exception handling

m Co-routines

m (pseudo, aka green) threads

Other Applications

123

* Other Uses for Continuations

CPS designed to preserve order of evaluation
Continuations used to express order of evaluation
Can be used to change order of evaluation
Implements:

= [Exceptions|and exception handling

m Co-routines

m (pseudo, aka green) threads

Other Applications

124

* Exceptions - Example

exception Zero;;
exception Zero

Other Applications

125

* Exceptions - Example

exception Zero;;
exception Zero
let rec mul_aux list =

match list with

[1->1

| X :: XS ->

if x = 0 then raise Zero else x * mul_aux xs;;

val mul_aux : int list -> int = <fun>

Other Applications

* 126

* Exceptions - Example

let list._mult list =
try mul_aux list with Zero -> 0;;
val list._ mult : int list -> int = <fun>

Other Applications

127

* Exceptions - Example

let list._mult list =

try mul_aux list with Zero -> 0;;
val list._ mult : int list -> int = <fun>
list_mult [3;4;2];;
-1int =24

Other Applications

128

* Exceptions - Example

let list._mult list =

mul_aux list Zero -> 0;;
val list._ mult : int list -> int = <fun>
list_mult [3;4;2];;
-1int =24
list_ mult [7;4;0];;
-:int=0

Other Applications

129

* Exceptions - Example

let list._mult list =

mul_aux list Zero -> 0;;
val list._ mult : int list -> int = <fun>
list_mult [3;4;2];;

-rint= 24
list_mult [7:4:0];;
-:int=0

mul_aux [7;4;0];;
Exception: Zero.

Other Applications

130

* Exceptions

m When an exception is raised
m The current computation is aborted

m Control is “thrown” back up the call stack
until a matching handler is found

m All the intermediate calls waiting for a return
values are thrown away

Other Applications

131

* Implementing Exceptions

let multkp (m, n) k =
letr=m*nin
(print_string "product result: ";
orint_int r; print_string "\n";
K)5
val multkp : int * int -> (int -> 'a) -> 'a = <fun>

Other Applications

132

* Implementing Exceptions

let rec mul_aux list k kexcp =
match list with
|[]1->k1
| X i1 XS ->

if x = 0 then
kexcp O

else
mul_aux xs (fun r -> multkp (X, r) k) kexcp;;

val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>

[Exception Handler]

Other Applications

133

* Implementing Exceptions

let rec mul_aux list k kexcp =
match list with
|[]1->k1
| X i1 XS ->

if x = 0 then
kexcp 0 [Raise Exception]

else
mul_aux xs (fun r -> multkp (X, r) k) kexcp;;

val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>

[Exception Handler]

Other Applications

134

* Implementing Exceptions

let rec mul_aux list k kexcp =
match list with
|[]1->k1
| X i1 XS ->
if x = 0 then
kexcp 0
else
mul_aux xs (fun r -> multkp (X, r) k) kexcp;;
val mul_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
let list_multk list k = mul_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>
Other Applications

135

* Implementing Exceptions

list_multk [3;4;2] report;;
product result:
product result:
Droduct result:
24

-1 unit = ()

N GO N

4

) Other Applications

136

* Implementing Exceptions

list_multk [3;4;2] report;;
Droduct result:
product result:
Droduct result:
24

- : unit = ()

list_multk [7;4;0] report;;
0

- : unit = ()

N GO N

4

) Other Applications

137

{ Questions?

138

* Takeaways

m We saw how to transform functions written in
direct style to functions written in
continuation-passing style (CPS), which is
super useful for compilers and interpreters

m We also saw how to use continuations to implement
exceptions—one of many features we can
implement with continuations

139

* Next Class

m I will be away! This absence is actually a planned
absence.

m [will record the lecture ahead of time and post
it for you all to watch.

= [will announce when it is ready.
m There will not be an in-person lecture.

m I will also miss office hours, but I will pay very
close attention to Piazza.

m [will post (extra) extra credit today. (Please don't
let it distract you from the midterm.)

140

