+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Quiz (20 Minutes)

Please check in before starting

Then navigate to https://us.prairietest.com/

Close all other tabs

Start the quiz when ready

Load one question in advance (two open instances)
Please run the test scripts before submitting

Note that there may be more tests for grading
Let us know if you run into any issues

Let us know if you'd like to check out

https://us.prairietest.com/

! Three Minute Break

* Objectives for Today

m Today, we will cover tail recursion a bit more

m We will focus on examples, capturing the
importance of the accumulator

m We will use this to lead in to something called
continuation-passing style, which has similar
accumulation behavior, but accumulates the
remaining work to be done rather than values

m This style, which we’ll cover more next class, is
super useful for compilers and interpreters

! Thanks, all, for patience and help!

! See Piazza

! Questions from last time?

! More Tail Recursion

* Tail Recursion
= lail Recursion form of Structural

Recursion (recurse on substructures)

= In tail recursion, first build the
intermediate result, then call the
function recursively

= Build answer as you go, typically using an
accumulator or auxiliary function

« Corresponds to folding left (with caveats)

Tail Recursion

* Tail Recursion
= lail Recursion form of Structural

Recursion (recurse on substructures)

= In tail recursion, first build the
intermediate result, then call the
function recursively

= Build answer as you go, typically using an
laccumulator|or auxiliary function

« Corresponds to folding left (with caveats)

Tail Recursion N

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| [] -> acc
| _ i1 bs -> length_aux bs (1 + acc);;

Y

1 +
/W
3

ecursion 1

let length =
length_aux list 0;;
1

O/
Tail

<« + <

1

= <« + <
AN

1

* Tail Recursion - Length

let rec length_aux list(@cc)=
match list with

| []->@cc)

| _:: bs -> length_aux bs [(1 + acc)};

Y

1 +
/W
3

ecursion 1

let length =
length_aux list 0;;
1

O/
Tail

<« + <

1

= <« + <
AN

2

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| [] -> acc
| _ :: bs ->|length_aux|bs (1 + acc);;

Y

1 +
/W
3

ecursion 1

let length =
length_aux list 0;;
1

O/
Tail

<« + <

1

= <« + <
AN

3

* Your turn: num_neg — tail recursive

let num_neg list =

let rec num_neg_aux list curr_neg =
22?2

| What to do first? |

in num_neg_aux list ???

) Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| []-> 2?? ‘Match! ‘
| (X :: Xs) ->
?27??

in num_neg_aux list ???

) Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| []-> 22? ‘Base case?‘
| (X :: Xs) ->
?27??

in num_neg_aux list ???

) Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg ‘The accumulated value! ‘
| (x 11 x8) ->
?2?7?

in num_neg_aux list ???

. Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg

| (X i1 XS) ->‘Recursive case? ‘
?2?2?

in num_neg_aux list ???

) Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X :: XS) ->|Recursive call is fast. |
num_neg_aux xs ??

in num_neg_aux list ???

) Tail Recursion

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg

| (X .. XS) ->‘ How to accumulate (i.e., update curr_neg)? ‘
num_neg_aux xs ??

in num_neg_aux list ???

Tail Recursion .

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg

| (X :: Xs) -> _ . .
Add 1 if the head is negative;
NUM_NEJ_AauX XS | otherwise change nothing.

(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list ???

Tail Recursion N

* Your turn: num_neg — tail recursive

let num_neg list =

let rec num_neg_aux list curr_neg =

match list with

| [] -> curr_neg

| (X i1 XS) ->

numM_neg_aux Xs
(if x < 0 then 1 + curr_neg else curr_neg)

in num_neg_aux list 2??

The real work here happens in the accumulator. But we need
an initial value for that accumulator. What should that be?

Tail Recursion .

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0

Tail Recursion .

! Questions so far?

24

! Tail recursion with fold left

25

* Tail Recursion by fold_left

let rec fold_left f a list =
match list with

|[[]->a
| (X :: xs) -> fold_left f (f a x) xs;;

val fold left :

'b list ->
'a A~ ¢ \7 an
= <fun> v a2

al Folding Left N

* Tail Recursion by fold_left

let rec fold_left f a list =

match list with Argument a is the
| [] -> 3 accumulated value.

| (X :: xs) -> fold_left f (f @ x) xs;;

val fold left :

'b list ->
'a A~ ¢ \7 an
= <fun> v a2

al Folding Left .

* Tail Recursion by fold_left

let rec fold_left f a list =

match list with Operator f does the
| [] -> a actual accumulation!

| (X :: xs) -> fold_left f (f a X) xs;;

val fold left :

'b list ->
'a A~ ¢ \7 an
= <fun> v a2

al Folding Left .

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| []-> acc
| _ :: bs -> length_aux bs (1 + acc)

let length =
length_aux list 0 Y
Y 1+
Y 1+ \/
1+0 \/ 3
\/ 2
1 Folding Left _

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| []-> acc
| _ :: bs -> length_aux bs (1 + acc)

let length =

length_aux list Y
1+
Y 1 \
‘basecase/id ‘ 1 +|§| 3
\
1 Folding Left

N &« 4+ <

* Tail Recursion - Length

let rec length_aux list acc =
match list with

1[1-> acc
| _:: bs -> length_aux bs (1 + acc)
f
let length = |_operator |

length_aux list

\
‘base case / id ‘ V 7 3
2
1 Folding Left N

<
¥
+

* Tail Recursion - Length

let rec length_aux list acc =
match list with

‘recursion (last) ‘

1[1-> acc :
| _ :: bs ->|length_aux bs|(1 + acc)
f
let length = |_operator |

length_aux list

‘base case / id ‘ 1 _|_ 0 /

Foldlng Left

* Tail Recursion - Length

let length list =

| fold_left|(fun acc -> fun ->\ 1 + acc) list
)

‘recursion (last) ‘ ‘ operator

‘base case / id

v 1

1 +
11(/*/
\/ 2
F

1 olding Left 33

\
+
\
3

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux Xs
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0
let num_neg list =
fold_left 2?2 22 list
Folding Left N

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux XS
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0

let num_neg list = [what is the base case—the
fold left 2? 22 list initial accumulated value?

Folding Left N

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux XS
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0

let num_neg list = [Zzero, so that's what we
fold left 2? 0O list pass for the last argument.

Folding Left N

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux XS
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0

let num_neg list = [what operator do we use to
fold left 2? 0 list update the accumulator?

Folding Left .

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
NUM_NEg_aux XS |This whole thing here: |
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0
let num_neg list =
fold_left ?2? 0O list

Folding Left .

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| []1-> curr_neg
| (X :: XxS) ->
NUM_NEg_aux XS |This whole thing here: |
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0
let num_neg list = ‘So we abstract it into a function: ‘

fold_left (funrx ->ifx<0then1 + relser) 0 list
Folding Left .

* Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with
| [] -> curr_neg
| (X i1 XS) ->
num_neg_aux XS
(if x < 0 then 1 + curr_neg else curr_neg)
in num_neg_aux list 0
let num_neg list =
fold_left (funxr->ifx<0Othen1l + relser)list0
Folding Left »

*

* Your turn: num_neg — tail recursive

(* Concise, captures essence of accumulation *)
let num_neg list =

fold_left (funxr->ifx<0Othen1l + relser)list0
Folding Left .

*

! Questions so far?

42

! Continuations, Briefly

43

ﬁ Continuations

m What if, rather than accumulating values, we
accumulate the work that remains to be done?

m Then we get these things called continuations.

Continuations, Briefly

* Continuations

m What if, rather than accumulating values, we
accumulate the work that remains to be done?

m Then we get these things called continuations.

m It turns out this is very useful for “non-local”
control flow, like:

m non-local jumps
m exceptions
m general conversion of non-tail calls to tail calls
m Essentially a higher-order function version of GOTO

Continuations, Briefly

* Continuations

m Idea: Use functions to represent the control
flow of a program

Continuations, Briefly

* Continuations

m Idea: Use functions to represent the control
flow of a program

m Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result

Continuations, Briefly

* Continuations

m Idea: Use functions to represent the control
flow of a program

m Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result

m Function receiving the result is called a
continuation

Continuations, Briefly

* Continuations

m Idea: Use functions to represent the control
flow of a program

m Method: Each procedure takes a function as an
extra argument to which to pass its result;
outer procedure “returns” no result

m Function receiving the result is called a
continuation

m Continuation acts as “"accumulator” for work
still to be done

Continuations, Briefly

* Continuation Passing Style

m Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result

Continuations, Briefly

* Continuation Passing Style

m Continuation Passing Style (CPS): Writing
functions such that all functions calls take a
continuation to which to pass the result, and
return no result
m CPS is useful as:
= A compilation technique to implement
non-local control flow (especially useful in
interpreters)

m A formalization of non-local control flow in
denotational semantics

m A possible intermediate state in compiling

functional code Continuations, Briefly _

* Why CPS?

Reasoning

Compilation
Optimization

Continuations, Briefly

* Why CPS?

Reasoning:
m Explicit order of evaluation

Compilation

Optimization

Continuations, Briefly

* Why CPS?

Reasoning:
m Explicit order of evaluation

Compilation:

m Variables/registers for each step of computation
= Functional to imperative

m Nice IR on the way to assembly or byte code
Optimization

Continuations, Briefly

* Why CPS?

Reasoning:
m Explicit order of evaluation

Compilation:

m Variables/registers for each step of computation
= Functional to imperative

m Nice IR on the way to assembly or byte code
Optimization:

m Tail recursion easy to identify

m Strict forward recursion becomes tail recursion
(at the expense of building large closures in heap)

Continuations, Briefly

* Other Uses for Continuations

= Changing order of evaluation

x Implementing:
m Exceptions and exception handling
m Coroutines
m (pseudo, aka green) threads

Continuations, Briefly _

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k =k (a + b);;
val addk : int * int -> (int -> ‘a) -> ‘a = <fun>

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k =k (a + b);;
val addk : int * int -> (int -> ‘a) -> ‘a = <fun>

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> "a) -> "a = <fun>

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b)[k|=[k|(a + b);;

val addk : int * int -> (int -> "a) -> ‘a = <fun>

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:

let addk (a, b) k =k (a + b);;

val addk : int * int -> (int -> "a) -> ‘a = <fun>
addk (22, 20) report;;

Continuations, Briefly

* Example

= Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:
let addk (a, b) k =k (a + b);;
val addk : int * int -> (int -> "a) -> ‘a = <fun>
addk (22, 20) report;;
42
- unit = ()
Continuations, Briefly .

{ Questions?

64

ﬁ Reminders

m Midterm 1 in CBTF 9/14-9/16—please signh up!
m [I'll post about the first extra credit on Piazza
very soon this week.

m All deadlines can be found on course website
m Use office hours and class forums for help

Next Class
65

