+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

ﬁ Objectives for Today

m On Thursday, we took an in depth look at lists and
recursive functions defined over lists.

m We also previewed some common higher-order
functions over lists—map and fold.

* Objectives for Today

m On Thursday, we took an in depth look at lists and
recursive functions defined over lists.

m We also previewed some common higher-order
functions over lists—map and fold.

m Today, we will look at these higher-order functions
in more detail, looking at the difference between
folding left and folding right.

m We will also learn about forward recursion and
tail recursion, and how these relate to folding left
and folding right.

! Questions from last time?

! Forward Recursion

Forward Recursion

« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

Forward Recursion

Forward Recursion

« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

= Wait until whole structure has been
traversed to start building answer

Forward Recursion

* Forward Recursion
« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

= Wait until whole structure has been
traversed to start building answer

« Corresponds to folding (with caveats)

Forward Recursion .

Forward Recursion

« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

= Wait until whole structure has been
traversed to start building answer

. Corresponds to folding|right|(with caveats)

There are two different orders we can fold over
lists in—we’ll see the other one later in class.

Forward Recursion ;

* Forward Recursion

let rec double_up list =
match list with

[[]->
| (x 2 X¥8) ->|(x :: x ::|double_up xs);
A
‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

Forward Recursion N

* Forward Recursion

let rec double_up list =
match list with

[[]->
| (x 2 X¥8) ->|(x :: x ::|double_up xs);
A
‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

let rec poor_rev list =
match list with ‘recursion (first) ‘ ‘ operator ‘

| [1->|1] v v
| (X :1%5) -> let r =|poor_rev xs|in r|@ [x];; |

|base case / id | Forward Recursion

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with

I[[]->
| (x :: X8) ->[f x[(fold_right f xs b);; |
5 —

‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

Forward Recursion .

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with

| [];gl _ _
| (x :: X8) ->|f x|(fold_right f xs b);; |
X

‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

val fold_right :
(Ia _> lb _> Ib) _>
a list ->
b ->
b
= <fun> Forward Recursion

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(Ia _> lb _> Ib) _>
'a list ->
'b->
b
= <fun> bn Forward Recursion

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(Ia _> Ib _> Ib) _>
a list ->
lb _>
b
= <fun> bn Forward Recursion

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(fa->'b->'D)->
a list ->
Ib _>
b

= <fun> bn Forward Recursion

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(‘fa->'b->"'b) ->)
by) b
b v \b(n 1)

= <fun> bn Forward Recursion -

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(‘fa->'b->"'b) -> \
by) b
b v \b(n -1)

= <fun> bn Forward Recursion .

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
Ca->"b-> 'b)->[3L f
'‘a list ->
b > £ v b1
|b V \b(n'l)

= <fun> bn Forward Recursion o

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
I []->D
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(Ia _> Ib _> Ib) _>
a list ->
lb _>
'b
= <fun> bn Forward Recursion

* Forward Recursion by fold_right

let rec multList list =
match list with
1[]1->1
| X i1 XS -> X * multList xs;;

48 Forward Recursion N

* Forward Recursion by fold_right

let rec multList list =
match list with
1[]1->1
| X i1 XS -> X * multList xs;;

let multList list =
List.fold_right
(fun x p -> X * p)
list
1;;

48 Forward Recursion .

* Forward Recursion by fold_right

let rec length list =
match list with
[1->0
| _::bs->1 + length bs;;

7
T 1+0
1 + \/

11 S

Voo~

3 Forward Recursion .

* Forward Recursion by fold_right

let rec length list =
match list with
[1->0
| _::bs->1 + length bs;;

let length list = Y
List.fold_right v o1 : 0
(fun_r->1+r1r) vy 1+
list 1+ !

3 Forward Recursion N

* Forward Recursion by fold_right

let rec double_up list =
match list with

[[]->
| (x 2 X¥8) ->|(x :: x ::|double_up xs);
A
‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

Forward Recursion .

* Forward Recursion by fold_right

let rec double_up list =
match list with

[[]->
| (x 2 X¥8) ->|(x :: x ::|double_up xs);
A
‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

let double_up list =

List.fold_right (f>| x 1 r) Ilst!

‘recursion (first) | operator |base case / id |

Forward Recursion .

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (funar-> 7) listl 7;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =1[4; 5; 6; 1; 2; 3]
ppend [] [1; 2; 3] =[1; 2; 3]
append [1; 2] [] =[1; 2]

Q)

Forward Recursion .

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (funar-> 7) listl ?;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =1[4; 5; 6; 1; 2; 3]
ppend [][1; 2; 3] =1[1; 2; 3]
append [1; 2] [] = [1; 2]

Q)

Forward Recursion .

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (fun a r -> 7) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =1[4; 5; 6; 1; 2; 3]
ppend [] [1; 2; 3] = [1; 2; 3]
append [1; 2] [] =[1; 2]

Q)

Forward Recursion .

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (fun a r -> ?) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =[4; 5; 6; 1; 2; 3]
ppend [] [1; 2; 3] =[1; 2; 3]
append [1; 2] [] = [1; 2]

Q)

Forward Recursion 0

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (funar -> a :: ?) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =[4; 5; 6; 1; 2; 3]
ppend [] [1; 2; 3] =[1; 2; 3]
append [1; 2] [] =[1; 2]

Q)

Forward Recursion .

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (fun ar -> a : ?) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [4; 5; 6] [1; 2; 3] =1[4;5; 6; 1; 2; 3]
ppend [] [1; 2; 3] =[1; 2; 3]
append [1; 2] [] =[1; 2]

Q)

Forward Recursion "

Forward Recursion by fold_right

+

#

va

et append listl list2 =
List.fold_right (fun ar -> a : ?) listl list2;;

append : 'a list -> 'a list -> 'a list = <fun>

4 :: append [5; 6][1; 2; 3] =[4;5; 6; 1; 2; 3]
append [][1; 2; 3] =11, 2; 3]
append [1; 2] [] =[1; 2]

Forward Recursion 33

Forward Recursion by fold_right

+

#

va

et append listl list2 =
List.fold_right (fun ar -> a :: r) listl list2;;

append : 'a list -> 'a list -> 'a list = <fun>

4 :: append [5; 6][1; 2; 3] =[4;5; 6; 1; 2; 3]
append [][1; 2; 3] =11, 2; 3]
append [1; 2] [] =[1; 2]

Forward Recursion N

* Forward Recursion by fold_right

let append listl list2 =
List.fold_right (funar->a:: r) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Forward Recursion N

* Forward Recursion
« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

= Wait until whole structure has been
traversed to start building answer

= Corresponds to folding right (with caveats)

Forward Recursion y

! Questions so far?

Forward Recursion

{ Tail Recursion

38

* Tail Recursion
= lail Recursion form of Structural

Recursion (recurse on substructures)

= In tail recursion, first build the
intermediate result, then call the
function recursively

Tail Recursion o

* Tail Recursion
= lail Recursion form of Structural

Recursion (recurse on substructures)

= In tail recursion, first build the
intermediate result, then call the
function recursively

= Build answer as you go, typically using an
accumulator or auxiliary function

Tail Recursion .

* Tail Recursion
= lail Recursion form of Structural

Recursion (recurse on substructures)

= In tail recursion, first build the
intermediate result, then call the
function recursively

= Build answer as you go, typically using an
accumulator or auxiliary function

. Corresponds to folding|left (with caveats)

Soon we’ll see the other direction we can fold in. ‘

Tail Recursion .

* Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

=« lail recursive programs may be optimized
to be implemented as loops, thus
removing the function call overhead for
the recursive calls

Tail Recursion .

* Forward Recursion - Length

let rec length list =
match list with
[[1->0
| _::bs->1 + length bs;;

Y
T~ 140
1 + V

1+ yoo~1

Voo~

3 Tail Recursion .

* Tail Recursion - Length

let rec length_aux list acc =
match list with

Tail Recursion .

* Tail Recursion - Length

let rec length_aux list acc =
match list with

let length =
length_aux list|0};

0]

Tail Recursion N

* Tail Recursion - Length

let rec length_aux list acc =
match list with

| i bs-> t1 +\acc);;

let length =
length_aux list 0;; Y

5, O

Tail Recursion .

6

* Tail Recursion - Length

let rec length_aux list acc =
match list with

| _::bs-> (1 + acc);;
let length = V
length_aux list 0;; 1+
T 1 \
1 ' 0 3]

Y
|
\/
Tall Iglcursmn

* Tail Recursion - Length

let rec length_aux list acc =
match list with

| _:: bs -> length_aux bs (1 + acc);;

let length = V
length_aux list 0;; v 1+
T 1+ \/
1 J; 0 \ E

Tail Recursion .

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| []->]acc|
| _ i1 bs ->length_aux bs (1 + acc);;

/i

ecursion .

let length =
length_aux list 0;;
1

O/
Tail

<« + <

1

H €« + <
N

9

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| [] -> acc
| _ i1 bs -> length_aux bs (1 + acc);;

\

1 +
/W
3

ecursion :

let length =
length_aux list 0;;
1

O/
Tail

<« + <«

1

= <« + <
AN

0

* Forward Recursion - Length

let rec length list =
match list with
[[1->0
| _::bs->1 + length bs;;

Y

Y 1+0

1+ \/

14 v oo~1
Voo~

3 Fa#t Recursion 3

* Tail Recursion - Length

let rec length_aux list acc =
match list with
| [] -> acc
| _ i1 bs -> length_aux bs (1 + acc);;

\

1 +
/W
3

ecursion :

let length =
length_aux list 0;;
1

O/
Tail

<« + <«

1

= <« + <
AN

2

! Questions so far?

Forward Recursion

! Forward vs. Tail Recursion: Runtime

54

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X :: XS) -> letr = poor_revxsinr @ [X];;

let rec rev_aux list revlist =

match list with

| []-> revlist

| X i1 XS -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

‘What is the runtime of each function? ‘

Runtime .

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X ::XS)->letr =poor_revxsinr@ [x];;

What is the runtime of each function?

Runtime
56

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X ::XS)->letr = poor_revxsinr@ [x];;

What is the runtime of each function?

Runtime
57

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X ::XS)->letr = poor_revxsinr @ [x];;

What is the runtime of each function?

Runtime
58

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X :: XS) -> letr = poor_revXxsinr @ [X];;

let rec rev_aux list revlist =

match list with

| []-> revlist

| X i1 Xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [1;;

‘What is the runtime of each function? ‘

Runtime
59

* Forward vs. Tail Recursion

let rec poor_rev list =
match list with

| [1-> L]

| (X :: XS) -> letr = poor_revXxsinr @ [X];;

let rec rev_aux list revlist =

match list with

| []-> revlist

| X :: XS -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [1;;

‘What is the runtime of each function? ‘

Runtime
60

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

Runtime N

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =
« (poor_rev [2;3]) @ [1] =

Runtime
62

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =
« (poor_rev [2;3]) @ [1] =
« ((poor_rev [3]) @ [2]) @ [1] =

Runtime
63

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @[1] =

Runtime
64

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @[1] =
» ([J@[3]) @[2]) @[1]) =

Runtime
65

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @ [1] =
» ([1@[3])@[2]) @[1]) =

. (B]1@[2]) @[1] =

Runtime
66

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @ [1] =
» ([1@[3])@[2]) @[1]) =

. (B]1@[2]) @[1] =

» B:([]1@[2]) @[1] =

Runtime
67

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @ [1] =
» ([J@[3) @[2]) @[1]) =

« (B]1@[2) @[1] =

» B:([]O@[2])) @[1] =

« [3;2] @ [1] =

Runtime
68

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @[1] =
» ([J@[3) @[2]) @[1]) =

« (B]1@[2) @[1] =

» B:([]O@[2])) @[1] =

« [3;2] @ [1] =

«» 3 ([2] @[1)) =

Runtime
69

* Forward vs. Tail Recursion

« poor_rev[1;2;3] =

« (poor_rev [2;3]) @ [1] =

« ((poor_rev [3]) @ [2]) @ [1] =

« (((poor_rev[]) @[3]) @[2]) @[1] =
» ([J@[3) @[2]) @[1]) =

« (B]1@[2) @[1] =

» B:([]O@[2])) @[1] =

« [3;2] @ [1] =

«» 3 ([2] @[1)) =

«» 32 ([1@[1])) =13; 2; 1]

Runtime
70

* Forward vs. Tail Recursion

« rev [1:2:3] =

Runtime 71

* Forward vs. Tail Recursion

« rev [1;2;3] =
. rev_aux [1:2:31[] =

Runtime
72

* Forward vs. Tail Recursion

« rev [1;2;3] =
. rev_aux [1:2:31[] =
= rev_aux [2:3][1] =

Runtime
73

* Forward vs. Tail Recursion

« rev [1:2:3] =

= Fev_aux
= Fev_aux
= FevV_aux

1;2;3][1=

2;3] [1] =

3] [271]

Runtime
74

* Forward vs. Tail Recursion

« rev [1:2:3] =

« rev_aux [1;2;3][] =

« rev_aux [2;3][1] =

« rev_aux [3][2;1] =

« rev_aux [][3;2;1] =1[3;2;1]

Runtime
75

! Folding: Right vs. Left

76

* Forward Recursion by fold_right

let rec fold_right f list b =
match list with
|[[]->b
| (X :: xs) -> f x (fold_right f xs b);;

val fold_right :
(la _> |b _> Ib) _>
'a list ->
b -> . v bl
b v ~b(n-1)
= <fun> bn Folding

* Tail Recursion by fold_left

let rec fold _left f a list =
match list with

[[1->a

| (X :: xs) -> fold_left f (f a x) xs;;
val fold_left :
(Ia _> Ib _> Ia) _>

b2
=
la _>

f

f / v
'b list -> s £ V an
: L

= <fun> a1 Folding

* Folding Left vs. Folding Right

let rec fold _left f a list =
match list with

| [1->a
| (X :: xs) -> fold_left f (f a x) xs;;

fold_left fa [x; x,;..;x 1 =f (... (f(fax,)x)..) x
let rec fold_right f list b =

match list with

[[1->b

| (X :: xs) -> f x (fold_right f xs b);;
fold_right f [x.; x 1b=fx(fx,(..(fFx b)..))

17 2["7

Folding |

* Folding Left vs. Folding Right

* Folding

m Can replace recursion by fold_right in any
forward primitive recursive definition

m Primitive recursive means it recurses only on
iImmediate subcomponents of recursive data
structure (like the tail of a list)

m Can replace recursion by fold_left in any tail
primitive recursive definition

Folding

{ Questions?

82

Next Class:
! Continuation-Passing Style

83

* Reminders

Quiz 2 on MP3 next Tuesday
Midterm 1 in CBTF 9/14-9/16—please signh up!

[

[

m All deadlines can be found on course website
m Use office hours and class forums for help
m Please thank Elsa again for covering <3

Next Class
84

