+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Objectives for Today

m On Thursday, we saw an introduction to recursion
and pattern matching in OCaml.

m We also saw how to evaluate expressions.

* Objectives for Today

m On Thursday, we saw an introduction to recursion
and pattern matching in OCaml.

m We also saw how to evaluate expressions.

m Today, we will take a much more in depth look at
pattern matching and recursion, defining
functions over the list datatype.

m We will also preview some common higher-order
functions over lists.

! Questions from last time?

{ Lists in OCaml|

* Lists

= List can take one of two forms:
= Empty list, written []

Lists in OCaml)

* Lists

« List can take one of two forms:
= Empty list, written []
= Non-empty list, written X :: xs

. X IS head element, xs is tail list, :: called
“cons”

Lists in OCaml i

* Lists

« List can take one of two forms:
= Empty list, written []
= Non-empty list, written X :: xs

. X IS head element, xs is tail list, :: called
“cons”

= Syntactic sugar: [X] == x i []
« [X1; X2 ..oxn]==x1::x2:...0:xn[]

Lists in OCaml

* Lists

let fib5 =[8; 5; 3; 2; 1; 11;;
val fib5 :int list = [8; 5; 3; 2; 1; 1]

Lists in OCaml ;

* Lists

let fib5 =[8; 5; 3; 2; 1; 11;;

val fib5 :int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

Lists in OCaml N

* Lists

let fib5 =[8; 5; 3; 2; 1; 11;;

val fib5 :int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13' 8;5;3;2;1; 1]
#(8::5::3::2: [] = fib5;;
- : bool = true

Lists in OCaml .

* Lists

let fib5 =[8; 5; 3; 2; 1; 11;;

val fib5 :int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13' 8;5;3;2;1; 1]
#(8::5::3::2: [] = fib5;;

- : bool = true

fib5 @ fib6;;

-:intlist=1[8;5;3;2;1;1; 13;8;5; 3; 2; 1; 1]

Lists in OCaml .

* Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here used with
type int

Lists in OCaml N

* Question

= Which one of these lists is invalid?

2; 3,4, 6]

(2,3); (4,5); (6,7)]

(2.3, 4); (3.2, 5), (6, 7.2)]

T°hi”; “there”]; [*"wahcha”]; [1; [“doin”]]

= > =

Lists in OCaml N

* Question

= Which one of these lists is invalid?

[2; 3; 4, 6]

[(2, 3); (4, 5); (6, 7)]

[(2.3, 4); (3.2, 5); (6, 7.2)]

[[“hi”; “there”]; [*'wahcha”]; [1; [“doin"]]

= b=

= 3 is invalid because of last pair

Lists in OCaml N

* Functions Over Lists

let rec double_up list =
match list with
|[]1->1[] (* pattern before ->, expression after *)
| (x :: x8)-> (X :: x:: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

Lists in OCaml .

* Functions Over Lists

let rec double_up list =
match list with
|[]1->1[] (* pattern before ->, expression after *)
| (x :: x8)-> (X :: x:: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;

val fib5_ 2 :intlist=1[8;8; 5;5;3;3;2;2;1; 1; 1; 1]

Lists in OCaml -

* Functions Over Lists

#

va

va

va

let rec double_up list =
match list with

|[]1->1[] (* pattern before ->, expression after *)
| (x :: x8)-> (X :: x:: double_up xs);;

double_up : 'a list -> 'a list = <fun>

et fib5_2 = double_up fib5;;

fib5_2 :intlist=1[8; 8;5;5; 3; 3;2;2;1; 1; 1; 1]
et silly = double_up ["hi"; "there"];;

silly : string list = ["hi"; "hi"; "there"; "there"]

Lists in OCaml N

* Functions Over Lists

let rec poor_rev list =
match list with

[[1->1]
| (X :: X8) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Lists in OCaml N

ﬁ Structural Recursion

m Lists are an example of a recursive datatype
m Functions on recursive datatypes tend to be
recursive

m Recursion over recursive datatypes generally by
structural recursion

m Recursive calls made to components of
structure of the same recursive type

m Base cases of recursive types stop the
recursion of the function

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list
- How to start?

let rec length list =

Lists in OCaml N

* Question: Length of list

m Problem: write code for the length of the list
- How to start?

let rec length list =
match list with

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list
- What patterns should we match against?

let rec length list =
match list with

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list
- What patterns should we match against?

let rec length list =
match list with

| [1->
| (a:: bs)->

Lists in OCaml N

* Question: Length of list

m Problem: write code for the length of the list
= What result do we give when list is empty?

let rec length list =
match list with

| [1->
| (@ :: bs) ->

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list
= What result do we give when list is empty?

let rec length list =
match list with
| [1->0
| (@ :: bs) ->

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with
| []->0
| (a:: bs)->

Lists in OCaml .

i Question: Length of list

m Problem: write code for the length of the list
= What result do we give when list is not empty?

let rec length list =
match list with
| [1->0
| (a:: bs)->1+ length bs

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list

let rec length list =
match list with
[]->0
(a :: bs) -> 1 + length bs

Lists in OCaml .

* Question: Length of list

m Problem: write code for the length of the list

let rec length list =
match list with
[]->0
(a :: bs) -> 1 + length bs

= Nil case [] is base case
= Cons case recurses on component list bs

Lists in OCaml 0

* Same Length

m How can we efficiently answer if two lists have the
same length?

Lists in OCaml .

* Same Length

m How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
match listl with

| [1->
| (X::XS) ->

Lists in OCaml "

* Same Length

m How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
match listl with
| [1 -> (match list2 with
| [] -> true
| (y::ys) -> false)
| (X::xs) -> (match list2 with
| []-> false
| (y::ys) -> same_length xs ys)
Lists in OCaml 33

* Same Length

m How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
match (list1, list2) with

[1, [] -> true

X::XS, Y::ys -> same_length xs ys

_ -> false

Lists in OCaml N

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doublelList list =

Lists in OCaml N

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
match list with
[]->

X 1. XS ->

Lists in OCaml y

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
match list with
[]1->1[]

X 1. XS ->

Lists in OCaml -

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been‘multiplied by 2

let rec doubleList list =
match list with
[]->1[]
:: XS -> ‘(2 * x)‘:: doubleList xs
- M

Lists in OCaml .

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
| each element|has been/multiplied by 2 |

let rec doubleList list =
match list with

[] -> T
:: xs|->|(2 * x)|::|doubleList xs |

- M

Lists in OCaml o

! Mapping over Lists

40

* Your turn: doubleList : int list -> int list

« Write a function that takes a list of int and
returns a list of the same length, where
| each element|has been/multiplied by 2 |

let rec doubleList list =
match list with

[] -> T
:: xs|->|(2 * x)|::|doubleList xs |

- M

Map

41

* Higher-Order Functions: Map

« Write a function that takes a list of ‘a and
returns a list of the same length, where
| each element |has been|transformed by f

let rec map f list =
match list with

[] -> N
:: ->‘(fx)‘::‘map f Xs ‘

- M

Map

42

* Higher-Order Functions: Map

« Write a function that takes a list of ‘a and
returns a list of the same length, where
| each element |has been|transformed by f

let rec map f list =
match list with

[] -> N
:: ->‘(fx)‘::‘map f Xs ‘

- M
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
Map

43

* Higher-Order Functions: Map

« Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been‘transformed by f

let rec mapE|Iist =
match list with

[]-> 1]

X it XS -> Elx) ' maplﬂxs

val map : (fa ->'b) -> 'alist -> 'b list = <fun>
Map

44

* Higher-Order Functions: Map

« Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
match list with
[1-> (]

X 11 XS -> (f X) :: map f xs

val map : ('a -> 'b) -> "a list -> 'b list = <fun>
Map

45

* Higher-Order Functions: Map

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let doubleList list =
List.map ? list

Map

46

* Higher-Order Functions: Map

« Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let doublelList list =
List.map (fun x => 2 * x) list

Map

47

* Higher-Order Functions: Map

« Write a function that takes a list of pairs and
returns a list of the first element of
every pair

let fstAll list =
List. map (fun (a, b) -> a) list

Map

48

* Higher-Order Functions: Map

« Write a function that takes a list of pairs and
returns a list of the first element of
every pair

let fstAll list =
List.map fst list

Map

49

* Higher-Order Functions: Map

« Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
match list with
[]-> (]

X 11 XS -> (f X) :: map f xs

Captures common recursive pattern, so fstAll,
doubleList, etc. need not be explicitly recursive.

Map

50

! Questions so far?

51

! Folding over Lists

52

* Higher-Order Functions: Fold

« Write a function that “folds” an operation
over the elements of the structure.

Fold
5

3

* Higher-Order Functions: Fold

« Write a function that “folds” an operation
over the elements of the list.

Fold
5

4

* Higher-Order Functions: Fold

« Write a function that “folds” multiplication
over the elements of the list of ints.

Fold
5

5

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

Fold
5

6

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

2 * multList [4; 6] =
2 * (4 * multList 6) =
2% (4% (6% 1)) 5

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

2 * multList [4; 6] =
2 * (4 * multList 6) =
2% (4% (6% 1)) 5

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

2 * multList [4; 6] =
2 * (4 * multList 6) =
2% (4% (6% 1)) 5

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

2 * multList [4; 6] =
2 * (4 * multList 6) =
2% (4% (6% 1)) =

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =

2 * multList [4; 6] =
2 * (4 * multList 6) =
2*(4*(6*1))=
48

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
match list with

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
match list with

[[1->[1

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

let rec multList list = 4 l/ @
match list with

Y *1
[[]1->1 * \/
2 [xs|- x V6

* Folding Recursion

« Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
match list with
[[]1->1
|[x]:z xs ->
XL* ImultList xs}:

* Folding Recursion

« Write a function that computes the length of
the input list.

let rec length list =
match list with
[[1->0
| @ :: bs ->
1 + length bs;;

i Folding Recursion

« Write a function that computes the length of
the input list.

let rec length list =
match list with
[[1->0
[a]:: bs ->
1 + length bs;;

i Folding Recursion

« Write a function that computes the length of
the input list.

let rec length list =

¥
match list with V 1+ 0
[[]->0 T 1+ \
|[_]:: bs -> 1+\¢\1
1 + length bs;: v 2
3 Fold .

i Folding Recursion

« Write a function that computes the length of
the input list.

let rec length list =

\/
match list with V 1+ 0
\ [] -> 0 T 1+ \
: bs -> 1+ ~_ \/ T~
Iength bs;:: v 2
3 Fold

72

! Generic List Fold Next Class

73

! Preview: Kinds of Recursion

74

Forward Recursion

« What do multList and length have in
common? Both use forward recursion

« Forward Recursion form of Structural
Recursion (recurse on substructures)

Kinds of Recursion .

* Forward Recursion
« What do multList and length have in
common? Both use forward recursion

« Forward Recursion form of Structural
Recursion (recurse on substructures)

« In forward recursion, first call the
function recursively on all recursive
components, and then build final result

= Wait until whole structure has been
traversed to start building answer

Kinds of Recursion .

* Forward Recursion: Examples

let rec double_up list =

match list with

[[1->1[]

| (X ::Xs) -> (X :: x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Kinds of Recursion _

* Forward Recursion: Examples

let rec double_up list =

match list with

[[1->1[]

| (X ::Xs) -> (X :: x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list with

| [1-> 1]
| (X ::xs)->letr =poor_revxsinr@ [Xx];;
val poor_rev : 'a list -> 'a list = <fun>

Kinds of Recursion .

* Forward Recursion: Examples

let rec double_up list =
match list with

[[1->[[1
| (X :: X&) -> (x :: x :: double_up xs);;

‘base case / id ‘

let rec poor_rev list =
match list with

| [1->]11
| (X :: Xs) -> letr = poor_revxsinr @ [x];;

[base case / id | Kinds of Recursion

* Forward Recursion: Examples

let rec double_up list =
match list with

[[1->][1

| (x 2 X8) ->|(x :: x ::|double_up xs);;

‘base case / id ‘ ‘ operator ‘

let rec poor_rev list =
match list with ‘ operator ‘

| [1->]L1 ¥
| (x :2%5) -> let r = poor_rev xs in r|@ [x];; |

|base case / id | Kinds of Recursion

* Forward Recursion: Examples

let rec double_up list =
match list with

[[]->
| (x 2 X¥8) ->|(x :: x ::|double_up xs);
A
‘base case / id ‘ ‘ operator ‘ ‘recursion (first) ‘

let rec poor_rev list =
match list with ‘recursion (first) ‘ ‘ operator ‘

| [1->|11 V ¥
| (x :2%5) -> let r 3 poor_rev xs in r|@ [x];; |

|base case / id | Kinds of Recursion

{ Questions?

82

* Takeaways

m Lists are recursive datatypes

m Functions over recursive datatypes like lists tend
to be recursive

m We saw a particular kind of recursion called
forward recursion in which the function is called
recursively before building the final results.

m There are some common paradigms for recursion
over lists (and other datatypes) that are captured
by higher-order functions:

m Mapping a function over every element of a list
m Folding an operation over elements of a list

83

Next Class:

Forward vs. Tail Recursion,
! Folding Left vs. Folding Right

ﬁ Reminders

WA2 due Thursday
Quiz 2 on MP3 next Tuesday

All deadlines can be found on course website
Use office hours and class forums for help
Please thank Elsa for covering <3

Next Class

85

* TODO takeaways, next time, assignments

06/07/23

86

