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Objectives for Today

2

■ On Thursday, we saw an introduction to recursion 
and pattern matching in OCaml.

■ We also saw how to evaluate expressions.
■ Today, we will take a much more in depth look at 

pattern matching and recursion, defining 
functions over the list datatype.

■ We will also preview some common higher-order 
functions over lists.
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   Questions from last time?
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    Lists in OCaml
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Lists

■ List can take one of two forms:
■ Empty list, written [ ]

■ Non-empty list, written  x :: xs

■ x is head element, xs is tail list, :: called 
“cons”

■ Syntactic sugar: [x] == x :: [ ]

■ [ x1; x2; …; xn] == x1 :: x2 :: … :: xn :: [ ]
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Lists

# let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

# let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

# (8 :: 5 :: 3 :: 2 :: 1 :: 1 :: [ ]) = fib5;;

- : bool = true

# fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists in OCaml
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# let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

# let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

# (8 :: 5 :: 3 :: 2 :: 1 :: 1 :: [ ]) = fib5;;

- : bool = true

# fib5 @ fib6;;
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Lists are Homogeneous

# let bad_list = [1; 3.2; 7];;
Characters 19-22:
  let bad_list = [1; 3.2; 7];;
                             ^^^
This expression has type float but is here used with 

type int

Lists in OCaml
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Question

■ Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [(2, 3); (4, 5); (6, 7)]
3. [(2.3, 4); (3.2, 5); (6, 7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]

Lists in OCaml
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Question

■ Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [(2, 3); (4, 5); (6, 7)]
3. [(2.3, 4); (3.2, 5); (6, 7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]

▪ 3 is invalid because of last pair

Lists in OCaml
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Functions Over Lists

# let rec double_up list =
    match list with
    | [ ] -> [ ]  (* pattern before ->, expression after *)
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

Lists in OCaml
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Functions Over Lists

# let rec poor_rev list =
  match list with
  | [ ] -> [ ]
  | (x :: xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Lists in OCaml
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Structural Recursion

■ Lists are an example of a recursive datatype
■ Functions on recursive datatypes tend to be 

recursive
■ Recursion over recursive datatypes generally by 

structural recursion
■ Recursive calls made to components of 

structure of the same recursive type
■ Base cases of recursive types stop the 

recursion of the function

Lists in OCaml



Question: Length of list

■ Problem: write code for the length of the list
■ How to start?

let rec length list = 
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Question: Length of list

■ Problem: write code for the length of the list
■ What patterns should we match against?

let rec length list =
    match list with
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■ Problem: write code for the length of the list
■ What patterns should we match against?

let rec length list =
    match list with 
    | [] ->
    | (a :: bs) -> 
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Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is empty?

let rec length list =
    match list with
     | [] -> 0
     | (a :: bs) -> 
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Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is not empty?

let rec length list =
    match list with
     | [] -> 0
     | (a :: bs) -> 
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■ Nil case [] is base case
■ Cons case recurses on component list bs

Lists in OCaml



Same Length

■ How can we efficiently answer if two lists have the 
same length?
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Same Length

■ How can we efficiently answer if two lists have the 
same length?

let rec same_length list1 list2 =
    match list1 with
    | [] -> (match list2 with 
       | [] -> true
       | (y::ys) -> false)
    | (x::xs) -> (match list2 with
        | [] -> false
        | (y::ys) -> same_length xs ys)
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Same Length

■ How can we efficiently answer if two lists have the 
same length?

let rec same_length list1 list2 =
    match (list1, list2) with
    | [], [] -> true
    | x::xs, y::ys -> same_length xs ys
    | _ -> false
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Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and 
returns a list of the same length, where 
each element has been multiplied by 2

let rec doubleList list =
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    Mapping over Lists



Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and 
returns a list of the same length, where 
each element has been multiplied by 2

let rec doubleList list =
  match list with
  | [] -> []
  | x :: xs -> (2 * x) :: doubleList xs 

* 41
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Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and 
returns a list of the same length, where 
each element has been transformed by f

let rec map f list =
  match list with
  | [] -> []
  | x :: xs -> (f x) :: map f xs 

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

* 42
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■ Write a function that takes a list of int and 
returns a list of the same length, where 
each element has been multiplied by 2

let doubleList list =
  List.map ? list 
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Higher-Order Functions: Map

                Map



■ Write a function that takes a list of int and 
returns a list of the same length, where 
each element has been multiplied by 2

let doubleList list =
  List.map (fun x -> 2 * x) list 
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Higher-Order Functions: Map

                Map



■ Write a function that takes a list of pairs and 
returns a list of the first element of 
every pair

let fstAll list =
  List.map (fun (a, b) -> a) list 
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■ Write a function that takes a list of pairs and 
returns a list of the first element of 
every pair

let fstAll list =
  List.map fst list 
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Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and 
returns a list of the same length, where 
each element has been transformed by f

let rec map f list =
  match list with
  | [] -> []
  | x :: xs -> (f x) :: map f xs 

* 50

Captures common recursive pattern, so fstAll, 
doubleList, etc. need not be explicitly recursive.

                Map
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   Questions so far?
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    Folding over Lists



Higher-Order Functions: Fold

■ Write a function that “folds” an operation 
over the elements of the structure.
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Higher-Order Functions: Fold

■ Write a function that “folds” an operation 
over the elements of the list.
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Higher-Order Functions: Fold

■ Write a function that “folds” multiplication
over the elements of the list of ints.
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Folding Recursion

■ Write a function that computes the product of 
all of the elements of the input list.
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■ Write a function that computes the product of 
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*
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■ Write a function that computes the product of 
all of the elements of the input list.

let rec multList list =
  match list with
  | [ ] -> 1
  | x :: xs ->
     x * multList xs;;

Folding Recursion
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■ Write a function that computes the length of
the input list.

let rec length list =
  match list with
  | [ ] -> 0
  | a :: bs ->
     1 + length bs;;
*
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■ Write a function that computes the length of
the input list.

let rec length list =
  match list with
  | [ ] -> 0
  | _ :: bs ->
     1 + length bs;;
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■ Write a function that computes the length of
the input list.

let rec length list =
  match list with
  | [ ] -> 0
  | _ :: bs ->
     1 + length bs;;
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Folding Recursion
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    Generic List Fold Next Class
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    Preview: Kinds of Recursion
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Forward Recursion

■ What do multList and length have in 
common? Both use forward recursion

■ Forward Recursion form of Structural 
Recursion (recurse on substructures)

■ In forward recursion, first call the 
function recursively on all recursive 
components, and then build final result

■ Wait until whole structure has been 
traversed to start building answer

                Kinds of Recursion
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Forward Recursion: Examples

# let rec double_up list =
    match list with 
    | [ ] -> [ ]
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
  match list with 
  | [] -> []
  | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

                Kinds of Recursion
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Forward Recursion: Examples
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Forward Recursion: Examples

# let rec double_up list =
    match list with 
    | [ ] -> [ ]
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
  match list with 
  | [] -> []
  | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id                 Kinds of Recursion
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Forward Recursion: Examples

# let rec double_up list =
    match list with 
    | [ ] -> [ ]
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
  match list with 
  | [] -> []
  | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id

   operator

   operator

                Kinds of Recursion
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Forward Recursion: Examples

# let rec double_up list =
    match list with 
    | [ ] -> [ ]
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
  match list with 
  | [] -> []
  | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id

   operator

   operator

recursion (first)

recursion (first)

                Kinds of Recursion
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   Questions?



Takeaways
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■ Lists are recursive datatypes
■ Functions over recursive datatypes like lists tend 

to be recursive
■ We saw a particular kind of recursion called 

forward recursion in which the function is called 
recursively before building the final results.

■ There are some common paradigms for recursion 
over lists (and other datatypes) that are captured 
by higher-order functions:
■ Mapping a function over every element of a list
■ Folding an operation over elements of a list
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Next Class:
Forward vs. Tail Recursion,
Folding Left vs. Folding Right



Reminders
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■ WA2 due Thursday
■ Quiz 2 on MP3 next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Please thank Elsa for covering <3

           Next Class



TODO takeaways, next time, assignments
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