
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Objectives for Today

2

■ On Thursday, we saw an introduction to recursion
and pattern matching in OCaml.

■ We also saw how to evaluate expressions.
■ Today, we will take a much more in depth look at

pattern matching and recursion, defining
functions over the list datatype.

■ We will also preview some common higher-order
functions over lists.

Objectives for Today

3

■ On Thursday, we saw an introduction to recursion
and pattern matching in OCaml.

■ We also saw how to evaluate expressions.
■ Today, we will take a much more in depth look at

pattern matching and recursion, defining
functions over the list datatype.

■ We will also preview some common higher-order
functions over lists.

4

 Questions from last time?

5

 Lists in OCaml

* 6

Lists

■ List can take one of two forms:
■ Empty list, written []

■ Non-empty list, written x :: xs

■ x is head element, xs is tail list, :: called
“cons”

■ Syntactic sugar: [x] == x :: []

■ [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

Lists in OCaml

* 7

Lists

■ List can take one of two forms:
■ Empty list, written []

■ Non-empty list, written x :: xs

■ x is head element, xs is tail list, :: called
“cons”

■ Syntactic sugar: [x] == x :: []

■ [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

Lists in OCaml

* 8

Lists

■ List can take one of two forms:
■ Empty list, written []

■ Non-empty list, written x :: xs

■ x is head element, xs is tail list, :: called
“cons”

■ Syntactic sugar: [x] == x :: []

■ [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

Lists in OCaml

* 9

Lists

let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8 :: 5 :: 3 :: 2 :: 1 :: 1 :: []) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists in OCaml

* 10

Lists

let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8 :: 5 :: 3 :: 2 :: 1 :: 1 :: []) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists in OCaml

* 11

Lists

let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8 :: 5 :: 3 :: 2 :: 1 :: 1 :: []) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists in OCaml

* 12

Lists

let fib5 = [8; 5; 3; 2; 1; 1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8 :: 5 :: 3 :: 2 :: 1 :: 1 :: []) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists in OCaml

* 13

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here used with

type int

Lists in OCaml

* 14

Question

■ Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [(2, 3); (4, 5); (6, 7)]
3. [(2.3, 4); (3.2, 5); (6, 7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

Lists in OCaml

* 15

Question

■ Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [(2, 3); (4, 5); (6, 7)]
3. [(2.3, 4); (3.2, 5); (6, 7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

▪ 3 is invalid because of last pair

Lists in OCaml

* 16

Functions Over Lists

let rec double_up list =
 match list with
 | [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

Lists in OCaml

* 17

Functions Over Lists

let rec double_up list =
 match list with
 | [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

Lists in OCaml

* 18

Functions Over Lists

let rec double_up list =
 match list with
 | [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

Lists in OCaml

* 19

Functions Over Lists

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Lists in OCaml

* 20

Structural Recursion

■ Lists are an example of a recursive datatype
■ Functions on recursive datatypes tend to be

recursive
■ Recursion over recursive datatypes generally by

structural recursion
■ Recursive calls made to components of

structure of the same recursive type
■ Base cases of recursive types stop the

recursion of the function

Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ How to start?

let rec length list =

* 21
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ How to start?

let rec length list =
 match list with

* 22
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What patterns should we match against?

let rec length list =
 match list with

* 23
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What patterns should we match against?

let rec length list =
 match list with
 | [] ->
 | (a :: bs) ->

* 24
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) ->

* 25
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) ->

* 26
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is not empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) ->

* 27
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is not empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> 1 + length bs

* 28
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is not empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> 1 + length bs

* 29
Lists in OCaml

Question: Length of list

■ Problem: write code for the length of the list
■ What result do we give when list is not empty?

let rec length list =
 match list with
 | [] -> 0
 | (a :: bs) -> 1 + length bs

* 30

■ Nil case [] is base case
■ Cons case recurses on component list bs

Lists in OCaml

Same Length

■ How can we efficiently answer if two lists have the
same length?

* 31
Lists in OCaml

Same Length

■ How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
 match list1 with
 | [] -> (match list2 with
 | [] -> true
 | (y::ys) -> false)
 | (x::xs) -> (match list2 with
 | [] -> false
 | (y::ys) -> same_length xs ys)

* 32
Lists in OCaml

Same Length

■ How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
 match list1 with
 | [] -> (match list2 with
 | [] -> true
 | (y::ys) -> false)
 | (x::xs) -> (match list2 with
 | [] -> false
 | (y::ys) -> same_length xs ys)

* 33
Lists in OCaml

Same Length

■ How can we efficiently answer if two lists have the
same length?

let rec same_length list1 list2 =
 match (list1, list2) with
 | [], [] -> true
 | x::xs, y::ys -> same_length xs ys
 | _ -> false

* 34
Lists in OCaml

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =

* 35
Lists in OCaml

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
 match list with
 | [] -> []
 | x :: xs -> (2 * x) :: doubleList xs

* 36
Lists in OCaml

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
 match list with
 | [] -> []
 | x :: xs -> (2 * x) :: doubleList xs

* 37
Lists in OCaml

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
 match list with
 | [] -> []
 | x :: xs -> (2 * x) :: doubleList xs

* 38
Lists in OCaml

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
 match list with
 | [] -> []
 | x :: xs -> (2 * x) :: doubleList xs

* 39
Lists in OCaml

40

 Mapping over Lists

Your turn: doubleList : int list -> int list

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let rec doubleList list =
 match list with
 | [] -> []
 | x :: xs -> (2 * x) :: doubleList xs

* 41
 Map

Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
 match list with
 | [] -> []
 | x :: xs -> (f x) :: map f xs

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

* 42
 Map

Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
 match list with
 | [] -> []
 | x :: xs -> (f x) :: map f xs

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

* 43
 Map

Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
 match list with
 | [] -> []
 | x :: xs -> (f x) :: map f xs

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

* 44
 Map

Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
 match list with
 | [] -> []
 | x :: xs -> (f x) :: map f xs

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

* 45
 Map

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let doubleList list =
 List.map ? list

* 46

Higher-Order Functions: Map

 Map

■ Write a function that takes a list of int and
returns a list of the same length, where
each element has been multiplied by 2

let doubleList list =
 List.map (fun x -> 2 * x) list

* 47

Higher-Order Functions: Map

 Map

■ Write a function that takes a list of pairs and
returns a list of the first element of
every pair

let fstAll list =
 List.map (fun (a, b) -> a) list

* 48

Higher-Order Functions: Map

 Map

■ Write a function that takes a list of pairs and
returns a list of the first element of
every pair

let fstAll list =
 List.map fst list

* 49

Higher-Order Functions: Map

 Map

Higher-Order Functions: Map

■ Write a function that takes a list of ‘a and
returns a list of the same length, where
each element has been transformed by f

let rec map f list =
 match list with
 | [] -> []
 | x :: xs -> (f x) :: map f xs

* 50

Captures common recursive pattern, so fstAll,
doubleList, etc. need not be explicitly recursive.

 Map

51

 Questions so far?

52

 Folding over Lists

Higher-Order Functions: Fold

■ Write a function that “folds” an operation
over the elements of the structure.

* 53
 Fold

Higher-Order Functions: Fold

■ Write a function that “folds” an operation
over the elements of the list.

* 54
 Fold

Higher-Order Functions: Fold

■ Write a function that “folds” multiplication
over the elements of the list of ints.

* 55
 Fold

Folding Recursion

■ Write a function that computes the product of
all of the elements of the input list.

* 56
 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
57

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
58

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
59

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
60

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
61

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
62

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
63

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

multList [2; 4; 6] =
2 * multList [4; 6] =
2 * (4 * multList 6) =
2 * (4 * (6 * 1)) =
48

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
64

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs ->
 x * multList xs;;

Folding Recursion

*

 2
 4

 6

 *

 24
 *

 48
65

 * 1

 6

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs ->
 x * multList xs;;
*

 2
 4

 6

 *

 24
 *

 48
66

 * 1

 6

Folding Recursion

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs ->
 x * multList xs;;
*

 2
 4

 6

 *

 24
 *

 48
67

 * 1

 6

Folding Recursion

 Fold

■ Write a function that computes the product of
all of the elements of the input list.

let rec multList list =
 match list with
 | [] -> 1
 | x :: xs ->
 x * multList xs;;
*

 2
 4

 6

 *

 24
 *

 48
68

 * 1

 6

Folding Recursion

 Fold

■ Write a function that computes the length of
the input list.

let rec length list =
 match list with
 | [] -> 0
 | a :: bs ->
 1 + length bs;;
*

 2
 4

 6

1 +

 2
1 +

 3
69

1 + 0

 1

Folding Recursion

 Fold

■ Write a function that computes the length of
the input list.

let rec length list =
 match list with
 | [] -> 0
 | a :: bs ->
 1 + length bs;;
*

 2
 4

 6

1 +

 2
1 +

 3
70

1 + 0

 1

Folding Recursion

 Fold

■ Write a function that computes the length of
the input list.

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs ->
 1 + length bs;;
*

 _
 _

 _

1 +

 2
1 +

 3
71

1 + 0

 1

Folding Recursion

 Fold

■ Write a function that computes the length of
the input list.

let rec length list =
 match list with
 | [] -> 0
 | _ :: bs ->
 1 + length bs;;
*

 _
 _

 _

1 +

 2
1 +

 3
72

1 + 0

 1

Folding Recursion

 Fold

73

 Generic List Fold Next Class

74

 Preview: Kinds of Recursion

* 75

Forward Recursion

■ What do multList and length have in
common? Both use forward recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

 Kinds of Recursion

* 76

Forward Recursion

■ What do multList and length have in
common? Both use forward recursion

■ Forward Recursion form of Structural
Recursion (recurse on substructures)

■ In forward recursion, first call the
function recursively on all recursive
components, and then build final result

■ Wait until whole structure has been
traversed to start building answer

 Kinds of Recursion

* 77

Forward Recursion: Examples

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

 Kinds of Recursion

* 78

Forward Recursion: Examples

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

 Kinds of Recursion

* 79

Forward Recursion: Examples

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id Kinds of Recursion

* 80

Forward Recursion: Examples

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id

 operator

 operator

 Kinds of Recursion

* 81

Forward Recursion: Examples

let rec double_up list =
 match list with
 | [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list with
 | [] -> []
 | (x :: xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

base case / id

base case / id

 operator

 operator

recursion (first)

recursion (first)

 Kinds of Recursion

82

 Questions?

Takeaways

83

■ Lists are recursive datatypes
■ Functions over recursive datatypes like lists tend

to be recursive
■ We saw a particular kind of recursion called

forward recursion in which the function is called
recursively before building the final results.

■ There are some common paradigms for recursion
over lists (and other datatypes) that are captured
by higher-order functions:
■ Mapping a function over every element of a list
■ Folding an operation over elements of a list

84

Next Class:
Forward vs. Tail Recursion,
Folding Left vs. Folding Right

Reminders

85

■ WA2 due Thursday
■ Quiz 2 on MP3 next Tuesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Please thank Elsa for covering <3

 Next Class

TODO takeaways, next time, assignments

06/07/23 86

