+

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* Objectives for Today

m On Thursday, you learned about environments

and closures, and how they track values in OCaml

m This was motivating what actually happens when
you evaluate an expression in OCaml

m We're almost there! But we omitted a lot of
important things we need to get there

m Today, we'll cover the remaining cool things
we need to get to evaluation

m As before, this captures concepts present in many
languages, so it is pretty broadly useful

m Though there are some language-specific quirks

3

! Piazza: On optimizing closures

! Questions about environments?

! More about OCaml

* Recall: Functions with more than one argument

let add_threexyz=x+vy + z;;

val add three : int -> int -> int -> int = <fun>

let add_three =
funx->(funy->(funz->x+vy+ 2));;

val add three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

More OCaml i

b3

* Recall: Functions with more than one argument

let add_threexyz=x+vy + z;;

val add three : int -> int -> int -> int = <fun>

let add_three =
funx->(funy->(funz->x+vy+ 2));;

val add three : int -> int -> int -> int = <fun>

m What is the value of add_three?

More OCaml .

* Recall: Functions with more than one argument

let add_threexyz=x+vy + z;;

val add three : int -> int -> int -> int = <fun>

let add_three =
funx->(funy->(funz->x+vy+ 2));;

val add three : int -> int -> int -> int = <fun>

m What is the value of add_three?

m Let Padd three be the environment before the

declaration

More OCaml ;

i Recall: Functions with more than one argument

let add_threexyz=x+vy + z;;

val add three : int -> int -> int -> int = <fun>

let add_three =
funx->(funy->(funz->x+vy+ 2));;

val add three : int -> int -> int -> int = <fun>

m What is the value of add_three?

m Let Padd three be the environment before the

declaration

m Value: <x->funy->(funz->xX+y +2), P three
: _

More OCaml N

i Partial Application

‘Iet add_threexyz=x+y +z

let h = add_three 5 4;;
val h : int -> int = <fun>

More OCaml .

i Partial Application

‘Iet add_threexyz=x+y +z

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-1int =12

More OCaml .

i Partial Application

‘Iet add_threexyz=x+y +z

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-:int =12

#h7;;

-1 int =16

More OCaml .

i Partial Application

‘Iet add_threexyz=x+y +z

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-:int =12

#h7;;

-1 int =16

Partial application also called sectioning

More OCaml y

* Functions as Arguments

let thrice f x = f (f (f X));;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>

More OCaml N

* Functions as Arguments

let thrice fx = f (f (f xX));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCaml .

* Functions as Arguments

let thrice fx = f (f (f X));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCaml -

* Functions as Arguments

let thrice fx = f (f (f X));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCaml N

* Functions as Arguments

let thrice f x = f (f (f x));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCaml N

* Functions as Arguments

let thrice fx = f (f (f xX));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCamI20

* Functions as Arguments

let thrice fx = f (f (f xX));;
val thrice : (fa -> 'a) -> 'a -> 'a = <fun>

More OCamI21

* Functions as Arguments

let thrice f x = f (f (f X));;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

More OCamI22

* Functions as Arguments

let thrice f x = f (f (f X));;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
#letg=(funfx->f(f(fx))) plus_two;;

More OCamI23

* Functions as Arguments

let thrice f x = f (f (f X));;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let g = (fun x ->
plus_two (plus_two (plus_two x)));;

More OCamI24

* Functions as Arguments

let thrice f x = f (f (f X));;

val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

More OCamI25

* Functions as Arguments

let thrice f x = f (f (f X));;

val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;

val plus_six : int -> int = <fun>

More OCamI26

* Functions as Arguments

let thrice f x = f (f (f X));;

val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;

val plus_six : int -> int = <fun>

plus_six 4;;

-:int =10

More OCamI27

* Functions as Arguments

let thrice f x = f (f (f X));;

val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;

val plus_six : int -> int = <fun>

plus_six 4;;

-:int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";:

More OCamI28

i Functions as Arguments

let thrice f x = f (f (f X));;

val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
let plus_six = thrice plus_two;;

val plus_six : int -> int = <fun>

plus_six 4;;

-:int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";:
- : string = "Hi! Hi! Hi! Good-bye!"

More OCamI29

! Questions so far?

More OCaml

| Tuples as Values

lets = (5, "hi", 3.2);;

More OCamI31

* Tuples as Values

let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)

More OCamI32

* Tuples as Values

/| p, ={c— 4, test - 3.7}
let s = (5, "hi", 3.2);;
val s : int * string * float = (5, "hi", 3.2)

More OCamI33

* Tuples as Values

/| p, =4{c— 4, test — 3.7}

let s = (5, "hi", 3.2);;

val s : int * string * float = (5, "hi", 3.2)

/I p,=1{s— (5 "hi", 3.2), c — 4, test — 3.7}

More OCamI34

* Functions on Tuples

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>

More OCamI35

* Functions on Tuples

let plus_pair (n, m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;

-:int=7/

More OCamI36

* Functions on Tuples

let plus_pair (n, m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;

-:int=7/

let double x = (X, x);;

val double : 'a -> 'a * 'a = <fun>

More OCamI37

* Functions on Tuples

let plus_pair (n, m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;

-:int=7/

let double x = (X, x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint *int = (3, 3)

More OCamI38

* Functions on Tuples

let plus_pair (n, m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3, 4);;

-:int=7/

let double x = (X, x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;
-rint *int = (3, 3)
double "hi";;

- 1 string * string = ("hi", "hi")
More OCaml

{ Currying

40

i Curried vs Uncurried

0
#
va

0

#
va

Recall:

et add threeuvw=u+v +w;;
add_three : int -> int -> int -> int = <fun>
How does it differ from:

et add_triple (u, v, w) =u + v + w;;

add_triple : int * int * int -> int = <fun>

Currying .

* Curried vs Uncurried

m Recall:

let add_threeuvw=u+v + w;;

val add_three : int -> int -> int -> int = <fun>
m How does it differ from:

let add_triple (u, v, w) =u+v + w;;

val add_triple : int * int * int -> int = <fun>

m add_three is curried,

Currying .

* Curried vs Uncurried

m Recall:

let add_three[u v w|=u + v + w;;

val add_three : int -> int -> int -> int = <fun>
m How does it differ from:

let add_triple (u, v, w) =u+v + w;;

val add_triple : int * int * int -> int = <fun>

m add_three is curried, [One argument at a time]

Currying .

* Curried vs Uncurried

m Recall:

let add_threeuvw=u+v + w;;

val add_three : int -> int -> int -> int = <fun>
m How does it differ from:

let add_triple (u, v, w) =u+v + w;;

val add_triple : int * int * int -> int = <fun>

m add_three is curried,

m add_triple is uncurried

Currying .

* Curried vs Uncurried

m Recall:

let add_threeuvw=u+v + w;;

val add_three : int -> int -> int -> int = <fun>
m How does it differ from:

let add_triple[(u, Vv, W)]= u+v+w;

val add_triple : int * int * int -> int = <fun>

m add_three is curried,
m add_triple is uncurried [Tuple, all at once]

Currying .

* Curried vs Uncurried

add_triple (6, 3, 2);;
-:int =11

Currying .

* Curried vs Uncurried

add_triple (6, 3, 2);;

-:int=11

add_triple 5 4;;

Characters 0-10:
add_triple 5 4;;

NANANANNANNANNANN

This function is applied to too many arguments,

maybe you forgot a ";

Currying .

* Curried vs Uncurried

add_triple (6, 3, 2);;

-:int=11

add_triple 5 4;;

Characters 0-10:
add_triple 5 4;;

NANANANNANNANNANN

This function is applied to too many arguments,
maybe you forgot a ;'

fun x -> add_triple (5, 4, x);;

:int -> int = <fun>

Currying w

! Questions so far?

Currying ,

! Back to OCaml

50

* Pattern Matching with Tuples

More OCamI51

* Pattern Matching with Tuples

/I p, =4{s— (5 "hi", 3.2),
c—4,a—1,b— 5}
#let(a, b, c) =s;; (*(ab,c)is a pattern *)

More OCamI52

* Pattern Matching with Tuples

/[p, =A{s— (5 "hi", 3.2),
c—4a—1,b— 5}

#let(a, b, c) =s;; (*(ab,c)is a pattern *)

vala:int=>5

val b : string = "hi"

val ¢ : float = 3.2

More OCamI53

* Pattern Matching with Tuples

/[p, ={s— (5, "hi", 3.2),
c—4a—1,b— 5}

#let(a, b, c) =s;; (*(ab,c)is a pattern *)

vala:int=>5

val b : string = "hi"

val ¢ : float = 3.2

/I p,={a — 5, b->"hi", c — 3.2,
s — (5, "hi", 3.2)}

More OCamI54

* Pattern Matching with Tuples

/[p, ={s— (5, "hi", 3.2),
c—4a—1,b— 5}

#leta, b, c =s;; (*can omit parens *)

vala:int =5

val b : string = "hi"

val ¢ : float = 3.2

/I p,={a — 5, b->"hi", c — 3.2,
s — (5, "hi", 3.2)}

More OCamI55

* Nested Tuples

(* Tuples can be nested *)

letd = ((1, 4, 62), ("bye", 15), 73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

More OCamI56

* Nested Tuples

(* Tuples can be nested *)

letd = ((1, 4, 62), ("bye", 15), 73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(* Patterns can be nested *)

let (p, (st,), _) = d;;

val p : int *int * int = (1, 4, 62)

val st : string = "bye"

More OCamI57

* Nested Tuples

(* Tuples can be nested *)

letd = ((1, 4, 62), ("bye", 15), 73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

(* _ matches all, but binds nothing *)

let (p, (st, _),) =d;;

val p :int *int *int = (1, 4, 62)

val st : string = "bye"

More OCamI58

! Closures map from Patterns

59

* Last Time: Defining Closures

= A closure is a pair of: ‘We lacked the)
= an environment, and vocabulary to say
 what this really is. |

m an association mapping:
a [sequence]of variables (input variables) to

an expression (the function body),
m written:

f — <|(v1,...,vn)|— exp, p, >

m Where p. is the environment in effect when f is
defined (if f is a simple function).

Closures & Patterns o

* This Time: Defining Closures

m A closure is a pair of:
= an environment, and
m an association mapping:
a [pattern]of variables (input variables) to

an expression (the function body),
m written:

f — <|(v1,...,vn)|— exp, p, >

m Where p. is the environment in effect when f is
defined (if f is a simple function).

Closures & Patterns N

* Reminder: Closure for plus_x

m When plus_x was defined, we had environment:

Pojus x = {...X—> 12, ...}

m Recall: let plus xy =y + x
is really let plus_ x =funy->y + X
m Closure for funy ->vy + x:
<y—>y+x ppIusx

m Environment just after plus_x defined:
{plus_x — <y — vy + X, Pojus. x >} + Potus. x

Closures & Patterns o

* Reminder: Closure for plus_x

m When plus_x was defined, we had environment:

Pojus x = {...X—> 12, ...}
m Recall: let plus xy =y + x
is really let plus_ x =funy->y + X
m Closure for funy ->vy + x:

y T X ppIus_x >

m Environment just after plus_x defined:
{plus_x — <y y + X, Potus x >) + Potus x

Closures & Patterns .

* New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
m Assume p us.pair Was the environment just before

plus_pair defined
m Closure for fun (n,m) -> n + m:

<(nlm) — n+m, pplus_pair

m Environment just after plus_pair defined:

{ plus_pair - <(h,m) — n + m, Potus. pair > }

pplus_pair
Closures & Patterns N

b3

* New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
m Assume p us.pair Was the environment just before

plus_pair defined
m Closure for fun (n,m) -> n + m:

<_) n-+m, pplus_pair>

m Environment just after plus_pair defined:

{ plus_pair 7 < —n+m, pplus_pair > } +

pplus_pair
Closures & Patterns .

b3

* New: Closure for plus_pair

let plus_pair (n, m) = n + m;;
val plus_pair : int * int -> int = <fun>
m Assume p us.pair Was the environment just before

plus_pair defined
m Closure for fun (n,m) -> n + m:

< @@ pplus_pair>

m Environment just after plus_pair defined:

{ plus_pair 7 <@4@ pplus_pair > } +

ppIus_pair
Closures & Patterns -

! Questions so far?

Closures & Patterns

! Pattern Matching

68

*Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, x, ¥) -> (X, ¥) Each x, y has scope of
(x, 0, y) -> (X, y) only its clause
(X, y,)->(X,V):; Use first matching clause

val triple_to_pair : int * int * int -> int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple =

Pattern Matching .

* Match Expressions

let triple_to_pair triple =

val triple_to_pair : int * int * int -> int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple =

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple =
match triple with
|

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
|
|
|

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching N

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(OI X, y) -> (xl y)

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(Ol X, Y) -> (XI Y)

(xl OI y) -> (xl y)

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching .

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, X, y) -> (X, y)
(%, 0,y) -> (X, ¥)
(x, y,) -> (X, ¥);;
val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching _

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, x,) -> (X, ¥) Each x, y has scope of
(%, 0, y) -> (X, V) only its clause

(xl Y, _) -> (Xl Y)II
val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching .

i Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, X, ¥) -> (X, ¥) Each x, y has scope of
(x, 0, y) -> (X, y) only its clause
(X, y,)-> (X, y):: Use first matching clause

val triple_to_pair : int * int * int -> Int * int = <fun>

Pattern Matching 79

* Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, X, ¥) -> (X, ¥) Each x, y has scope of
(x, 0, y) -> (X, y) only its clause
(X, y,)-> (X, y):: Use first matching clause

val triple_to_pair : int * int * int -> Int * int = <fun>
triple_to_pair (0, 5, 0);;

‘What IS the result? ‘

Pattern Matching .

i Match Expressions

let triple_to_pair triple = Each clause: pattern on

match triple with left, expression on right
(0, X, ¥) -> (X, ¥) Each x, y has scope of
(x, 0, y) -> (X, y) only its clause
(X, y,)-> (X, y):: Use first matching clause

val triple_to_pair : int * int * int -> Int * int = <fun>
triple_to_pair (0, 5, 0);;

-rint *int = (5, 0)
Pattern Matching o

{ Questions?

82

ﬁ Takeaways

m We saw some great language features, like:
m tuples,
m patterns,
m pattern matching, and
m partial application.

m Currying gets us between a function that takes a
tuple as an argument, and a function that takes its
arguments one at a time. The latter can be partially
applied; the former cannot be!

m Closures map from patterns.

83

Next Class:

Evaluating expressions in OCaml
! (but actually), and more

84

* Reminder: Also Next Class

m WAI1 is due on Thursday
m This is worth points!
m Please do this!

m MP2 due next Tuesday

m All deadlines can be found on course website
m Use office hours and class forums for help

Next Class
85

