
1

Programming Languages and 
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/ 

Based heavily on slides by Elsa Gunter, which were 
based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/


2

   Course Logistics



Assignments and Deadlines

3

■ MP1 is “due” on Tuesday
■ Not directly worth points
■ But first quiz is on Tuesday
■ Questions on first quiz are literally from MP1
■ All quizzes and the MPs before them are like this
■ Sorry for confusion
■ Quiz happens in person—please show up!

■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Any questions about this?

               Logistics



Assignments and Deadlines

4

■ MP1 is “due” on Tuesday
■ Not directly worth points
■ But first quiz is on Tuesday
■ Questions on first quiz are literally from MP1
■ All quizzes and the MPs before them are like this
■ Sorry for confusion
■ Quiz happens in person—please show up!

■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Any questions about this?

               Logistics

See Lecture 1 Follow-up on 
Piazza for info on first question 
that I forgot to share Tuesday



Assignments and Deadlines

5

■ MP1 is “due” on Tuesday
■ Not directly worth points
■ But first quiz is on Tuesday
■ Questions on first quiz are literally from MP1
■ All quizzes and the MPs before them are like this
■ Sorry for confusion
■ Quiz happens in person—please show up!

■ All deadlines can be found on course website
■ Use office hours and class forums for help
■ Any questions about this?

               Logistics

There are 5 quizzes, not 4. 
Slides last class had a typo.
Website is correct here!



Course TAs - Our Sections

6

Paul Krogmeier   James Luo

               Logistics



Course TAs - Other Sections

7
               Logistics

Shaurya Gomber  Deeya Bansal

Benjamin Darnell Alan Yao



8

Questions about OCaml so far?



Objectives for Today

9

■ On Tuesday, you got started with OCaml
■ Today, you will start to learn what actually happens 

when you run OCaml, like:
■ What happens when you evaluate an 

expression in OCaml?
■ How does OCaml keep track of values?

■ This captures concepts present in many 
languages, so it is pretty broadly useful

■ Though there are some language-specific quirks



10

Environments



11

Environments

■ Environments keep track of what value is 
associated with a given identifier

■ Central to the semantics (meaning) and 
implementation of a language

■ Notation:
ρ = {name1 → value1, name2→ value2, …}

   Using set notation, but describes a partial function
■ Often stored as list, or stack

■ To find value start from left and take first match

Environments



12

Environments

■ Environments keep track of what value is 
associated with a given identifier

■ Central to the semantics (meaning) and 
implementation of a language

■ Notation:
ρ = {name1 → value1, name2→ value2, …}

   Using set notation, but describes a partial function
■ Often stored as list, or stack

■ To find value start from left and take first match

Environments



Environments

13

              

             X → 3

y → 17

name → “Steve”

b → true

Environments



Environments

14

              

             X → 3

y → 17

name → “Steve”

b → true

region → (5.4, 3.7)

Environments



Environments

15

              

             X → 3

y → 17

name → “Steve”

b → true

region → (5.4, 3.7)

 f → …

Environments



Environments

16

              

             X → 5

y → 17

name → “Steve”

b → true

region → (5.4, 3.7)

 f → …

Environments



17

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1 
    let b = a + 4;; (* Sequence *)
//  ρ2 = {b → 5, a → 1, test → false}

Environments



18

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1 
    let b = a + 4;; (* Sequence *)
//  ρ2 = {b → 5, a → 1, test → false}

Environments



19

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1 
    let b = a + 4;; (* Sequence *)
//  ρ2 = {b → 5, a → 1, test → false}

Environments



20

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1
    let b = a + 4;; (* Sequence *)
//  ρ2 = {b → 5, a → 1, test → false}

Environments



21

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1
    let b = a + 4;; (* Sequence *)
//  ρ2 = {b → 5, a → 1, test → false}

Environments



22

Changing the Environment

# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
# let a = 1 let b = a + 4;; (* Sequence *)

//  ρ2 = {b → 5, a → 1, test → false}

b → 5

test → false

a → 1

Environments



# 2 + 3;;     ( Expression )
// doesn’t affect the environment
# let test = 3 < 2;;       ( Declaration )
val test : bool = false
//  ρ1 = {test → false}
(* Updating bindings *)
let test = 3.7;;

23

Changing the Environment

b → 5

test → false

a → 1

Environments



# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
(* Updating bindings *)
let test = 3.7;;
//  ρ3 = {test → 3.7, a → 1, b → 5}

24

New Bindings Hide Old

b → 5

test → 3.7

a → 1

Environments



# 2 + 3;;     (* Expression *)
// doesn’t affect the environment
# let test = 3 < 2;;       (* Declaration *)
val test : bool = false
//  ρ1 = {test → false}
(* Updating bindings *)
let test = 3.7;;
//  ρ3 = {test → 3.7, a → 1, b → 5}

25

New Bindings Hide Old

b → 5

test → 3.7

a → 1

Environments

Aside: It is common to 
implement as association 
lists, and just ignore rather 
than remove old bindings



Let’s start WA1-IC together!

(This will help you with WA1.)
WA

26



27

Questions so far?



28

Variables and Environments



29

Global Versus Local Variables

# let a = 1 
   let b = a + 4;;
//  ρ = {b → 5, a → 1, …}

       Variables and Environments



30

Global Versus Local Variables

# let a = 1 in
   let b = a + 4 in 
   b;;
- : int = 5

       Variables and Environments



31

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1, …}
   let b = a + 4 in 
   b;;
- : int = 5

       Variables and Environments



32

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1, …}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1, …}
   b;;
- : int = 5

       Variables and Environments



33

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1, …}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1, …}
   b;;  
- : int = 5

       Variables and Environments



34

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1, …}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1, …}
   b;;  // ρ4 = {…}
- : int = 5

       Variables and Environments



35

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1, …}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1, …}
   b;;  // ρ4 = {…}
- : int = 5

       Variables and Environments

Local variables are 
not accessible outside 
of their local scope!



36

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1}
   b;;  // ρ4 = {}
- : int = 5
# b;;
Error: Unbound value b

       Variables and Environments

So imagine we started 
with an empty 
environment … 



37

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1}
   b;;  // ρ4 = {}
- : int = 5
# b;;
Error: Unbound value bWhat is the result?

       Variables and Environments



38

Global Versus Local Variables

# let a = 1 in // ρ2 = {a → 1}
   let b = a + 4 in // ρ3 = {b → 5,  a → 1}
   b;;  // ρ4 = {}
- : int = 5
# b;;
Error: Unbound value b

       Variables and Environments



39

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# plus_x 3;;

       Variables and Environments



40

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# plus_x 3;;

       Variables and Environments



41

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# plus_x 3;;

What is the result?

       Variables and Environments



42

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# plus_x 3;;
- : int = 15

       Variables and Environments



43

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# let x = 7;;
val x : int = 7
# plus_x 3;;

       Variables and Environments



44

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# let x = 7;;
val x : int = 7
# plus_x 3;;
What is the result?

       Variables and Environments



45

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# let x = 7;;
val x : int = 7
# plus_x 3;;
- : int = 15

       Variables and Environments



46

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# let x = 7;;
val x : int = 7
# plus_x 3;;
- : int = 15

       Variables and Environments



47

Values Fixed at Declaration Time

# let x = 12;;
val x : int = 12
# let plus_x y = y + x;;
val plus_x : int -> int = <fun>
# let x = 7;;
val x : int = 7
# plus_x 3;;
- : int = 15

       Variables and Environments

How does the environment 
keep track of functions? What’s 
actually happening inside of 
the environment here?



48

Closures



49

Motivating Closures

■ Functions are first-class values in this language
■ What value does the environment record for a 

function variable, like plus_x?
■ The answer is what we call a closure

Closures



50

Defining Closures

■ A closure is a pair of:
■ an environment, and
■ an association mapping:

■ a sequence of variables (input variables) to
■ an expression (the function body),

■ written:

     f → < (v1,…,vn) → exp, ρf >

■ where ρf is the environment in effect when f is 
defined (if f is a simple function).

Closures



51

■ A closure is a pair of:
■ an environment, and
■ an association mapping:

■ a sequence of variables (input variables) to
■ an expression (the function body),

■ written:

     f → < (v1,…,vn) → exp, ρf >

■ where ρf is the environment in effect when f is 
defined (if f is a simple function).

Closures

Defining Closures



52

Closure for plus_x

■ When plus_x was defined, we had environment:

      ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
   is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures



53

Closure for plus_x

■ When plus_x was defined, we had environment:

      ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
   is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures



54

Closure for plus_x

■ When plus_x was defined, we had environment:

      ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
   is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures



55

Closure for plus_x

■ When plus_x was defined, we had environment:

      ρplus_x = {…, x → 12, …}

■ Recall: let plus_x y = y + x
   is really let plus_x = fun y -> y + x

■ Closure for fun y -> y + x:

<y → y + x, ρplus_x >

■ Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Closures



Let’s continue WA1-IC!

(This will help you with WA1.)
WA

56



57

Questions?



Takeaways

58

■ Languages (including OCaml) map variables to 
values in an environment.

■ Functions in OCaml are first-class values—so in 
environments, function variables map to values.

■ The particular values they map to are called 
closures. These store environments, as well as a 
map from input variables to the function body. 

■ In OCaml, the environment stored in a closure is 
the one from when the function was first defined.

■ Doing WA1 will help you develop more intuition for 
this—please ask for help if you need it! 



59

Next Class:
Evaluating Expressions in OCaml



Reminder: Also Next Class

60

■ MP1 is “due” on Tuesday
■ Not directly worth points
■ But first quiz is on Tuesday
■ Questions on first quiz are literally from MP1
■ All quizzes and the MPs before them are like this
■ Sorry for confusion
■ Quiz happens in person—please show up!

■ All deadlines can be found on course website
■ Use office hours and class forums for help

           Next Class


