Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them) (%
4218 SC, UIUC o)

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

! Course Logistics

ﬁ Assignments and Deadlines

m MP1 is "due” on Tuesday

Not directly worth points

But first quiz is on Tuesday

Questions on first quiz are literally from MP1
All quizzes and the MPs before them are like this
Sorry for confusion

Quiz happens in person—please show up!

m All deadlines can be found on course website
m Use office hours and class forums for help
m Any questions about this?

Logistics

* Assignments and Deadlines

r N
See Lecture 1 Follow-up on

= MP1is "due” on Tuesday Piazza for info on first question
Not directly worth points | that I forgot to share Tuesday
But first quiz is on Tuesday

Questions on first quiz are literally from MP1
All quizzes and the MPs before them are like this
Sorry for confusion

Quiz happens in person—please show up!

m All deadlines can be found on course website
m Use office hours and class forums for help
m Any questions about this?

Logistics

* Assignments and Deadlines

-
- W ” There are 5 quizzes, not 4.
m MP1 is "due” on Tuesday | sjides last class had 2 typo.

m Not directly worth points (Website is correct here!

m But first quiz is on Tuesday

Questions on first quiz are literally from MP1
|All quizzes|and the MPs before them are like this
Sorry for confusion

Quiz happens in person—please show up!

m All deadlines can be found on course website
m Use office hours and class forums for help
m Any questions about this?

Logistics

Course TAs - Our Sections

\

Qaul Krogmeier James Luo/

Logistics

Course TAs - Other Sections

K Benjamin Darnell Alan Yao/

Logistics

! Questions about OCaml so far?

ﬁ Objectives for Today

m On Tuesday, you got started with OCaml

m Today, you will start to learn what actually happens
when you run OCaml, like:

m What happens when you evaluate an
expression in OCaml?

m How does OCaml| keep track of values?

m This captures concepts present in many
languages, so it is pretty broadly useful

m Though there are some language-specific quirks

{ Environments

10

| Environments

m Environments keep track of what value is
associated with a given identifier

m Central to the semantics (meaning) and
implementation of a language

m Notation:
p = {name, — value,, name,— value,, ...}
Using set notation, but describes a partial function
m Often stored as list, or stack
m To find value start from left and take first match

Environments N

| Environments

m Environments keep track of what value is
associated with a given identifier

m Central to the semantics (meaning) and
implementation of a language

m Notation:
p = {name, — value,, name,— value,, ...}
Using set notation, but describes a partial function
m Often stored as list, or stack
m To find value start from left and take first match

Environments .

| Environments

name - “Steve”

X -3

b - true \

—

Environments .

| Environments

name - “Steve”

X -3

v o 17 region - (5.4, 3.7)

b - true \

—

Environments y

| Environments

name - “Steve”

X -3

v o 17 region - (5.4, 3.7)

_ f - ... \
b - true

—

Environments N

| Environments

name - “Steve”

X-95

v o 17 region - (5.4, 3.7)

b - true

—

Environments .

* Changing the Environment

#2+ 3;; (* Expression *)
/| doesn’t affect the environment

Environments -

* Changing the Environment

#2+3;; (* Expression *)

// doesn't affect the environment

lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/| p, = {test — false}

Environments N

* Changing the Environment

#2+3;; (* Expression *)

// doesn't affect the environment

lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/| p, = {test — false}

Environments o

* Changing the Environment

#2+3;; (* Expression *)

// doesn't affect the environment

lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/| p, = {test — false}

Environments .

* Changing the Environment

#2+3;; (* Expression *)
// doesn't affect the environment
lettest = 3 < 2;; (* Declaration *)
val test : bool = false
/| p, = {test — false}
#leta=1
letb = a + 4;; (* Sequence *)
/| p,={b—5,a— 1, test — false}

Environments N

* Changing the Environment

test - false

/| p,={b—5,a— 1, test — false}

Environments .

* Changing the Environment

test - false

(* Updating bindings *)
let test = 3.7;;

Environments .

* New Bindings Hide OId

test - 3.7
b5

/

(* Updating bindings *)
let test = 3.7;;
/| p; ={test—3.7,a—1,b— 5}

Environments N

* New Bindings Hide Old

test - 3.7
b5

/

(Aside: It is commonto)

. L. implement as association
% %
(* Updating bindings *) lists, and just ignore rather

let test = 3.7;; than remove old bindings
/| p; ={test—3.7,a—1,b— 5}

Environments .

+

Let’s start WA1-IC together!

(This will help you with WA1.)

! Questions so far?

27

! Variables and Environments

28

* Global Versus Local Variables

#leta=1
letb =a + 4;;
/| p={b—5,a—-1,..}

Variables and Environments N

* Global Versus Local Variables

#leta=11In
letb=a+ 4 iIn
b;;

Variables and Environments .

* Global Versus Local Variables

#leta=1in//p,={a—1, ...}
letb =a + 4 In
b;;

Variables and Environments .

* Global Versus Local Variables

#leta=1in//p,={a—1, ...}
letb=a+4in//p,={b—5, a—1,..}
b;;

Variables and Environments Y

* Global Versus Local Variables

#leta=1in//p,={a—1, ...}
letb=a+4in//p,={b—5, a—~1,..}
b;;

-:int=5

Variables and Environments 33

* Global Versus Local Variables

#leta=1in//p,={a—1, ...}
letb=a+4in//p,={b—5, a—~1,..}

b;; // p,= L}
-:int=5

Variables and Environments N

* Global Versus Local Variables

#leta=1in//p,={a—1, ...}
letb=a+4in//p,={b—5, a—~1,..}

b;; // p,= L}
-:int=5

~ _ ~
Local variables are

not accessible outside
\of their local scope!

Variables and Environments -

* Global Versus Local Variables

#leta=1in//p,={a— 1}
letb=a+4in//p,={b—5, a— 1}

b;; //p,=4%

-:int=5

r

So imagine we started
with an empty

kenvironment

\

J

Variables and Environments

36

* Global Versus Local Variables

#leta=1in//p,={a— 1}
letb=a+4in//p,={b—5, a— 1}

b;; //p,=4%
-:int=5
b;;

‘What IS the result? ‘

Variables and Environments .

* Global Versus Local Variables

#leta=1in//p,={a— 1}
letb=a+4in//p,={b—5, a— 1}

b;; //p,=4%
-:int=5
b;;

Error: Unbound value b

Variables and Environments N

* Values Fixed at Declaration Time

#letx =12;;
val X :int = 12

Variables and Environments N

* Values Fixed at Declaration Time

#letx=12;;

val X : int = 12

#letplus xy=vy + x;;

val plus_x : int -> int = <fun>

Variables and Environments .

* Values Fixed at Declaration Time

#letx=12;;

val X : int = 12

#letplus xy=vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

Variables and Environments "

* Values Fixed at Declaration Time

#letx=12;;

val X : int = 12

#letplus xy=vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

Variables and Environments .

* Values Fixed at Declaration Time

#letx =12;;

val X : int = 12

letplus Xy =vy + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

Variables and Environments .

* Values Fixed at Declaration Time

#letx =12;;

val X : int = 12

#letplus xy=vy + x;;

val plus_x : int -> int = <fun>
#letx=7;;

val X :int=7

plus_x 3:;

What is the result?

Variables and Environments .

* Values Fixed at Declaration Time

#letx =12;;

val X : int = 12

#letplus xy=vy + x;;

val plus_x : int -> int = <fun>
#letx =7;;

val X :int =7

plus_x 3:;

-:int =15

Variables and Environments N

* Values Fixed at Declaration Time

#letx =12;;

val X : int = 12

letplus Xy =vy + x;;

val plus_x : int -> int = <fun>

plus_x 3;;
-:int =15

Variables and Environments .

* Values Fixed at Declaration Time

#letx =12;;
val X : int =12

letplus Xy =vy + x;;
val plus_x : int -> int = <fun>

4)

How does the environment
keep track of functions? What's

p|US_X 3;; actually happening inside of
- int = 15 Che environment here? y

Variables and Environments .

! Closures

48

* Motivating Closures

m Functions are first-class values in this language

m What value does the environment record for a
function variable, like plus_x?

m [he answer is what we call a closure

Closures "

* Defining Closures

m A closure is a pair of:
= an environment, and
m an association mapping:
a sequence of variables (input variables) to
an expression (the function body),

Closures -

* Defining Closures

m A closure is a pair of:
= an environment, and
m an association mapping:
a sequence of variables (input variables) to

an expression (the function body),
m written:

f — < (vl,..,vn) — exp, p, >

m Where p. is the environment in effect when f is
defined (if f is a simple function).

Closures :

* Closure for plus_x

m When plus_x was defined, we had environment:
{...X—> 12, ...}

pplus_x =

Closures 52

* Closure for plus_x

m When plus_x was defined, we had environment:

Pojus x = {...X—> 12, ...}
m Recall: let plus xy =y + x
is really let plus_ x =funy->y + X

Closures S

* Closure for plus_x

m When plus_x was defined, we had environment:

Pojus x = {...X—> 12, ...}
m Recall: let plus xy =y + x
is really let plus_ x =funy->y + X
m Closure for funy ->vy + x:

<y —=>VY+XPp

plus_ x

Closures N

* Closure for plus_x

m When plus_x was defined, we had environment:

Pojus x = {...X—> 12, ...}
m Recall: let plus xy =y + x
is really let plus_ x =funy->y + X

m Closure for funy ->vy + x:
<y—->VYV+X,p

plus_ x

m Environment just after plus_x defined:
{plus_x — <y — vy + X, Pojus. x >} + Potus. x

Closures .

+

Let's continue WA1-IC!

(This will help you with WA1.)

{ Questions?

57

* Takeaways

Languages (including OCaml) map variables to
values in an environment.

Functions in OCaml are first-class values—so in
environments, function variables map to values.

The particular values they map to are called
closures. These store environments, as well as a
map from input variables to the function body.

In OCaml, the environment stored in a closure is
the one from when the function was first defined.

Doing WA1 will help you develop more intuition for
this—please ask for help if you need it!

58

Next Class:
! Evaluating Expressions in OCaml

59

ﬁ Reminder: Also Next Class

m MP1 is "due” on Tuesday

Not directly worth points

But first quiz is on Tuesday

Questions on first quiz are literally from MP1
All quizzes and the MPs before them are like this
Sorry for confusion

Quiz happens in person—please show up!

m All deadlines can be found on course website
m Use office hours and class forums for help

Next Class
60

