
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

Programming Languages & Compilers

2

I

New
Programming

Paradigm

III

Language
Semantics

Three Main Topics of the Course

3

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Programming Languages & Compilers

Three Main Topics

4

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

Programming Languages & Compilers

Three Main Topics

I : New Programming Paradigm

5

Functional
Programming

Environments
and

Closures

Continuation
Passing

Style

Patterns of
Recursion

Programming Languages & Compilers

Three Main Topics

I : New Programming Paradigm

6

Lexing and
Parsing

Type
Systems

Interpretation

Programming Languages & Compilers

II : Language Translation

Three Main Topics

7

Lexing and
Parsing

Type
Systems

Interpretation

Programming Languages & Compilers

II : Language Translation

Three Main Topics

8

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

Programming Languages & Compilers

III : Language Semantics

Three Main Topics

9

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

CS422 CS426
CS477

Programming Languages & Compilers

Three Main Topics

III : Language Semantics

10

Course Objectives

■ New programming paradigm
■ Functional programming
■ Environments and Closures
■ Patterns of Recursion
■ Continuation Passing Style

■ Language translation
■ Lexing and parsing
■ Type systems
■ Interpretation

■ Language semantics
■ Lambda Calculus
■ Operational Semantics
■ Axiomatic Semantics

Three Main Topics

11

 Course Logistics

12

Contact Information - Talia Ringer

■ Office: 4218 SC
■ Office hours:

■ Mondays 330 PM - 430 PM
■ Also by appointment (Calendly)

■ Email: tringer@illinois.edu
■ they/them

 Logistics

https://calendly.com/taliaringer/cs-421-fall-2023-office-hours-appointment
mailto:tringer@illinois.edu

13

Relationship to CS421D Sections

■ Same
■ Lecture schedule
■ Assignments
■ Shared pool of TAs
■ Most policies

■ Different
■ Professor
■ Lecture style
■ Grading policy & extra credit

 Logistics

14

Relationship to CS421D Sections

■ Same
■ Lecture schedule
■ Assignments
■ Shared pool of TAs
■ Most policies

■ Different
■ Professor
■ Lecture style
■ Grading policy & extra credit

 Logistics

CS421D videos and slides
will be online, too, if you’d
like a different perspective
on the same material.

15

Relationship to CS421D Sections

■ Same
■ Lecture schedule
■ Assignments
■ Shared pool of TAs
■ Most policies

■ Different
■ Professor
■ Lecture style
■ Grading policy & extra credit

 Logistics

Please don’t ask other sections’
TAs for help with extra credit
unique to our sections (will be
explicit when relevant).

Course TAs - Our Sections

16

Paul Krogmeier

 Logistics

Course TAs - Other Sections

17
 Logistics

Shaurya Gomber Deeya Bansal

Benjamin Darnell Alan Yao

Course TAs - All

18

Paul Krogmeier

 Logistics

Shaurya Gomber Deeya Bansal

Benjamin Darnell Alan Yao

19

Course Website

■ https://courses.grainger.illinois.edu/cs421/fa2023/
■ I am Prof. Ringer; your section is CU/CG

■ Main page - summary of news items
■ Class forum - link to Piazza
■ Policy - rules governing course
■ Lectures - syllabus and slides
■ MPs - information about assignments
■ Exams – Syllabi and review material for exams
■ Unit Projects - for 4 credit students
■ Resources - tools and helpful info
■ FAQ

 Logistics

https://courses.grainger.illinois.edu/cs421/fa2023/

Some Course References

■ No required textbook
■ Some suggested references

20
 Logistics

21

Some Course References

■ No required textbook.
■ Pictures of the books on previous slide
■ Essentials of Programming Languages (2nd

Edition) by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

■ Compilers: Principles, Techniques, and Tools,
(also known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

■ Modern Compiler Implementation in ML by
Andrew W. Appel, Cambridge University Press 1998

■ Additional ones for Ocaml given separately

 Logistics

22

Course Grading

■ Assignments 20%
■ Web Assignments (WA) (~10%)
■ MPs (in Ocaml) (~10%)
■ All WAs and MPs Submitted in PrairieLearn
■ Late submission:

■ 48 hours, unless otherwise specified
■ capped at 80% of total

 Logistics

23

Course Grading

■ Assignments 20%
■ Web Assignments (WA) (~10%)
■ MPs (in Ocaml) (~10%)
■ All WAs and MPs Submitted in PrairieLearn
■ Late submission:

■ 48 hours, unless otherwise specified
■ capped at 80% of total

 Logistics

Weighed more heavily than in
CS421D sections—please do these!

24

■ Four quizzes, in class - 10%
■ 3 Midterms, CBTF - 15% each

■ Midterm 1: 9/14 - 9/16
■ Midterm 2: 10/12 - 10/14
■ Midterm 3: 11/9 - 11/11
■ Be around for these dates!

■ Final: 25%
■ Tuesday, 12/12, 8:00 AM - 11:00 AM

■ Percentages are approximate

Course Grading

 Logistics

25

■ Four quizzes, in class - 10%
■ 3 Midterms, CBTF - 15% each

■ Midterm 1: 9/14 - 9/16
■ Midterm 2: 10/12 - 10/14
■ Midterm 3: 11/9 - 11/11
■ Be around for these dates!

■ Final: 25%
■ Tuesday, 12/12, 8:00 AM - 11:00 AM

■ Percentages are approximate

Course Grading

Weighed less heavily than in CS421D,
to make a bit less stressful, hopefully. Logistics

26

■ 4 credit students have a course project, 25%
■ The rest of the grade will add to 75%
■ See policy webpage for details

Course Grading

 Logistics

27

■ Creative opportunities, extra credit, ~1% each
■ This section only
■ Hope to spark enthusiasm and reduce stress
■ More details coming soon

Course Grading

 Logistics

28

■ Creative opportunities, extra credit, ~1% each
■ This section only
■ Hope to spark enthusiasm and reduce stress
■ More details coming soon

Course Grading

 Logistics

If you are in CS421D and hand these
in, you will not get credit, even if you
plead ignorance. This is an experiment
I’m doing for this section!

29

Course Assignments – WA & MP

■ You may discuss assignments & solutions with others.
■ You may work in groups, but:

■ You must list members with whom you worked
if you share solutions or detailed solution outlines.

■ Each student must write up and turn in their own
solution separately. (No direct copy-paste – type it
yourself from your understanding.)

■ Cite any sources appropriately.
■ Note: University policy on plagiarism still holds — cite

your sources if not the sole author of your solution.
■ Do not have to cite course notes or me.

 Logistics

30

Accommodations

■ All professors and TAs must comply with DRES
accommodations!
■ It is illegal not to do this in the US, and if any of

your course staff for any course refuse, you can
escalate to DRES and/or CS CARES

■ The system is not completely just, so:
■ I can help you get started with DRES if you do not

have official accommodations, but need them
■ Please tell me if there are ways I can make the

class more accessible
■ You can always reach out if you are going through

something or need help Logistics

31

Accommodations

■ All professors and TAs must comply with DRES
accommodations!
■ It is illegal not to do this in the US, and if any of

your course staff for any course refuse, you can
escalate to DRES and/or CS CARES

■ The system is not completely just, so:
■ I can help you get started with DRES if you do not

have official accommodations, but need them
■ Please tell me if there are ways I can make the

class more accessible
■ You can always reach out if you are going through

something or need help Logistics

32

Unofficial Communication

■ I know students like to make Discord servers for
these courses. That’s fine, but:
■ Bullying on Discord is real and unacceptable
■ If you use any server name or description that is in

any way affiliated with the university, department,
or course, even if it unofficial, you are responsible
for upholding the CS Code of Conduct

■ The same holds for other unofficial class forums if
they are branded as such

■ Please talk to CS CARES or to me (I am part of CS
CARES, anyways) if this is not being upheld

 Logistics

33

 Questions so far?

 Logistics

34

 OCaml

35

OCaml

■ Locally:
■ Will use OCaml inside VSCode inside PrairieLearn

problems this semester
■ Globally:

■ Main OCaml home: http://ocaml.org
■ To install OCaml on your computer see:

http://ocaml.org/docs/install.html
■ To try on the web: https://try.ocamlpro.com
■ More notes on this later

 OCaml

http://ocaml.org/
http://ocaml.org/docs/install.html
https://try.ocamlpro.com/

36

References for OCaml

■ Supplemental texts (not required):
■ The Objective Caml system release 4.05, by

Xavier Leroy, online manual
■ Introduction to the Objective Caml

Programming Language, by Jason Hickey
■ Developing Applications With Objective Caml,

by Emmanuel Chailloux, Pascal Manoury, and
Bruno Pagano, on O’Reilly
■ Available online from course resources

 OCaml

37

Features of OCaml

■ Higher order applicative language
■ Call-by-value parameter passing
■ Modern syntax
■ Parametric polymorphism

■ Also known as structural polymorphism
■ Automatic garbage collection
■ User-defined algebraic data types

 OCaml

38

Ways of Writing OCaml

■ In your favorite editor (good for large projects)
■ In an interactive session (good for class)

 OCaml

39

Ways of Writing OCaml

■ In your favorite editor (good for large projects)
■ In an interactive session (good for class)

 OCaml

40

Session in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

41

Session in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

42

Session in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

43

Session in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

44

Expressions in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

45

Expressions in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

46

Expressions in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

47

Expressions in OCaml

% ocaml
Objective Caml version 4.07.1
(* Read-eval-print loop *)
 2 + 3;; (* Expression *)
- : int = 5
3 < 2;; (* Expression *)
- : bool = false

 OCaml

* 48

Sequencing Expressions

print_string "Bye\n";;
Bye
- : unit = ()
25;;
- : int = 25
(print_string "Bye\n"; 25);;
Bye
- : int = 25

 OCaml

Declarations

let x = 2 + 3;; (* declaration *)
val x : int = 5
let test = 3 < 2;; (* declaration *)
val test : bool = false

49
 OCaml

Declarations

let x = 2 + 3;; (* declaration *)
val x : int = 5
let test = 3 < 2;; (* declaration *)
val test : bool = false

50
 OCaml

Sequencing of Declarations

let a = 1
 let b = a + 4;;
val a : int = 1
val b : int = 5

51
 OCaml

52

Booleans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false

 OCaml

53

Boolean Combinators

3 > 1 && 4 > 6;;
- : bool = false
3 > 1 || 4 > 6;;
- : bool = true
not (4 > 6);;
- : bool = true
if b > a then 25 else 0;;
- : int = 25

 OCaml

54

Booleans and Short-Circuit Evaluation

(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

 OCaml

* 55

Notes About Floats: No Overloaded Operators

1 + 0;;
- : int = 1
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int
1.35 +. 0.23;;
- : float = 1.58

 OCaml

* 56

Notes About Floats: No Overloaded Operators

1 + 0;;
- : int = 1
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int
1.35 +. 0.23;;
- : float = 1.58

 OCaml

* 57

Notes About Floats: No Overloaded Operators

1 + 0;;
- : int = 1
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int
1.35 +. 0.23;;
- : float = 1.58

 OCaml

* 58

Notes About Floats: No Overloaded Operators

1 + 0;;
- : int = 1
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int
1.35 +. 0.23;;
- : float = 1.58

 OCaml

Notes About Floats: No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
 1.0 * 2;; (* No Implicit Coercion *)
 ^^^
Error: This expression has type float but an

expression was expected of type
 int

* 59
 OCaml

60

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

61

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

62

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

63

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

64

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

65

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

66

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;

 OCaml

67

Anonymous Functions are Fun

fun n -> n + 2;;
val plus_two : int -> int = <fun>
(fun n -> n + 2) 17;;

 OCaml

68

Anonymous Functions are Fun

let plus_two = fun n -> n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

69

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19

 OCaml

70

Functions with More Arguments

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let f = add_three 6;;
val f : int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

 OCaml

71

Functions with More Arguments

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let f = add_three 6;;
val f : int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

 OCaml

72

Functions with More Arguments

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let f = add_three 6;;
val f : int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

 OCaml

73

Functions with More Arguments

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let f = add_three 6;;
val f : int -> int -> int = <fun>
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

 OCaml

74

Ways of Writing OCaml

■ In your favorite editor (good for large projects)
■ In an interactive session (good for class)

 OCaml

75

Ways of Writing OCaml

■ In VSCode (MP1 on PrairieLearn)
■ In an interactive session (good for class)

 OCaml

REPL versus Files

let x = 2 + 3;;
val x : int = 5

let a = 1
 let b = a + 4;;
val a : int = 1
val b : int = 5

76
 OCaml

REPL versus Files

let x = 2 + 3
val x : int = 5

let a = 1
 let b = a + 4;;
val a : int = 1
val b : int = 5

77
 OCaml

REPL versus Files

let (x : int) = 2 + 3
val x : int = 5

let a = 1
 let b = a + 4;;
val a : int = 1
val b : int = 5

78
 OCaml

REPL versus Files

let (x : int) = 2 + 3
val x : int = 5

let a = 1
 let b = a + 4;;
val a : int = 1
val b : int = 5

79
 OCaml

REPL versus Files

let (x : int) = 2 + 3
val x : int = 5

let a = 1
 let b = a + 4
val a : int = 1
val b : int = 5

80
 OCaml

REPL versus Files

let (x : int) = 2 + 3
val x : int = 5
(* different meaning, but more common *)
let a = 1 in
 let b = a + 4
val a : int = 1
val b : int = 5

81
 OCaml

82

 Questions so far?

 OCaml

OCaml in the Wild

83
 OCaml

Bonus

84

 More next class!

More Next Class

85
 OCaml

Start MP1!

86

