Types of Formal Language Descriptions
- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata – covered in automata theory

BNF Grammars
- Start with a set of characters, a, b, c, \ldots
 - We call these terminals
- Add a set of different characters, X, Y, Z, \ldots
 - We call these nonterminals
- One special nonterminal S called start symbol

Sample Grammar
- Language: Parenthesized sums of 0's and 1's
 - $<\text{Sum}> ::= 0$
 - $<\text{Sum}> ::= 1$
 - $<\text{Sum}> ::= <\text{Sum}> + <\text{Sum}>
 - $<\text{Sum}> ::= (<\text{Sum}>)$
 - Can be abbreviated as $<\text{Sum}> ::= 0 | 1 | <\text{Sum}> + <\text{Sum}> | (<\text{Sum}>)$
BNF Derivations

- Given rules
 \[X ::= yZw \text{ and } Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \rightarrow yZw \rightarrow yvv \]
- Sequence of such replacements called \textit{derivation}
- Derivation called \textit{right-most} if always replace the right-most non-terminal

BNF Derivations

- Start with the start symbol:
 \[\text{<Sum>} \rightarrow \]

BNF Derivations

- Pick a non-terminal
 \[\text{<Sum>} \rightarrow \]

BNF Derivations

- Pick a non-terminal:
 \[\text{<Sum>} \rightarrow \text{<Sum>} + \text{<Sum>} \]

BNF Derivations

- Pick a rule and substitute:
 \[\text{<Sum>} ::= (\text{<Sum>}) \]
 \[\text{<Sum>} \rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>}) + \text{<Sum>} \]
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>

BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

Pick a rule and substitute:

<Sum> ::= 1
<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

BNF Derivations

Pick a rule and substitute:

<Sum> ::= 0
<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

BNF Derivations

Pick a rule and substitute

<Sum> ::= 0
<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

Extended BNF Grammars

Alternatives: allow rules of from X::=y|z
Abbreviates X::= y, X::= z
Options: X::=y[v]z
Abbreviates X::=yvz, X::=yz
Repetition: X::=y[v]*z
Can be eliminated by adding new nonterminal V and rules X::=yz, X::=yVz, V::=v, V::=vV

Parse Trees

Graphical representation of derivation
Each node labeled with either non-terminal or terminal
If node is labeled with a terminal, then it is a leaf (no sub-trees)
If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example

Consider grammar:
<exp> ::= <factor>
 | <factor> + <factor>
<factor> ::= <bin>
 | <bin> * <exp>
<bin> ::= 0 | 1

Problem: Build parse tree for 1 * 1 + 0 as an <exp>
1 * 1 + 0: <exp>

<exp> is the start symbol for this parse tree

Use rule: <exp> ::= <factor>

1 * 1 + 0: <exp>
<factor>

Use rules: <bin> ::= 1 and <exp> ::= <factor> + <factor>

1 * 1 + 0: <exp>
<factor>
<bin> * <exp>
1 <factor> + <factor>

Use rules: <bin> ::= 1 | 0
Example cont.

1 * 1 + 0:

- \(<exp>\)
- \(<factor>\) * \(<exp>\)
- \(<bin>\) * \(<factor>\) + \(<factor>\)

Fringe of tree is string generated by grammar

Your Turn: 1 * 0 + 0 * 1

- \(<exp>\)
- / / \ \<fact> + <fact>
- / / \ / \ / \ * <e> * <e>

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example

- Recall grammar:
 \(<exp> ::= <factor> | <factor> + <factor>\)
 \(<factor> ::= <bin> | <bin> * <exp>\)
 \(<bin> ::= 0 | 1\)

- Type:
 - \(\text{exp} = \text{Factor2Exp of factor}\)
 - \(\text{factor} = \text{Bin2Factor of bin}\)
 - \(\text{bin} = \text{Zero} | \text{One}\)

Example cont.

- Can be represented as

\[
\text{Factor2Exp (Mult(One, Plus(Bin2Factor One, Bin2Factor Zero))})
\]
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.
- If all BNF’s for a language are ambiguous then the language is *inherently ambiguous*.

Example: Ambiguous Grammar

0 + 1 + 0

Example

What is the result for:

3 + 4 * 5 + 6

Possible answers:

- 41 = ((3 + 4) * 5) + 6
- 47 = 3 + (4 * (5 + 6))
- 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
- 77 = (3 + 4) * (5 + 6)

Example

What is the value of:

7 – 5 – 2

Possible answers:

- In Pascal, C++, SML assoc. left: 7 – 5 – 2 = (7 – 5) – 2 = 0
- In APL, associate to right: 7 – 5 – 2 = 7 – (5 – 2) = 4
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity
- Not the only sources of ambiguity

Disambiguating a Grammar

- Given ambiguous grammar G, with start symbol S, find a grammar G' with same start symbol, such that
 - language of $G = $ language of G'
- Not always possible
- No algorithm in general

Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can't happen)
- Use these properties to inductively guarantee every string in language has a unique parse

Steps to Grammar Disambiguation

- Identify the rules and a smallest use that display ambiguity
- Decide which parse to keep; why should others be thrown out?
- What syntactic restrictions on subexpressions are needed to throw out the bad (while keeping the good)?
- Add a new non-terminal and rules to describe this set of restricted subexpressions (called stratifying, or refactoring)
- Characterize each non-terminal by a language invariant
- Replace old rules to use new non-terminals
- Rinse and repeat

Example

- Ambiguous grammar:

  ```
  <exp>  ::=  0 | 1 | <exp> + <exp> | <exp> * <exp>
  ```

- String with more than one parse:
 - $0 + 1 + 0$
 - $1 * 1 + 1$

- Source of ambiguity: associativity and precedence

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity
- Not the only sources of ambiguity
How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural, leave right-most one for right associativity, left-most one for left associativity

Example

- \(<\text{Sum}> ::= 0 | 1 | <\text{Sum}> + <\text{Sum}> | (<\text{Sum}>)\)
- Becomes
 - \(<\text{Sum}> ::= <\text{Num}> | <\text{Num}> + <\text{Sum}>\)
 - \(<\text{Num}> ::= 0 | 1 | (<\text{Sum}>)\)
- \(<\text{Sum}> + <\text{Sum}> + <\text{Sum}>\)

Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).
- Precedence for infix binary operators given in following table
- Needs to be reflected in grammar

Precedence Table - Sample

<table>
<thead>
<tr>
<th>Operator Precedence</th>
<th>Fortan</th>
<th>Pascal</th>
<th>C/C++</th>
<th>Ada</th>
<th>SML</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest</td>
<td>**</td>
<td>*, /,</td>
<td>**</td>
<td>div, mod, /, *</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>div, mod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>+, -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%, mod</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+, -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+, -</td>
<td>::</td>
</tr>
</tbody>
</table>

First Example Again

- In any above language, \(3 + 4 \times 5 + 6 = 29\)
- In APL, all infix operators have same precedence
 - Thus we still don’t know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
 - \(<\text{exp}> ::= 0 | 1 | <\text{exp}> + <\text{exp}> | <\text{exp}> * <\text{exp}>\)
- Becomes
 - \(<\text{exp}> ::= <\text{mult}_\text{exp}>\)
 - \(<\text{mult}_\text{exp}> ::= <\text{id}> | <\text{mult}_\text{exp}> * <\text{id}>\)
 - \(<\text{id}> ::= 0 | 1\)
More Disambiguating Grammars

- $M ::= M \ast M \mid (M) \mid M ++ \mid 6$
- Ambiguous because of associativity of \ast
- because of conflict between \ast and $++$:
 - $6 \ast 6 ++$
 - $6 \ast 6 ++$

- $M = 6 \ast 6$ $+$ $6 \ast 6$ $+$ 6
- $M = 6$ $*$ 6 $+$ 6
- $M = 6$ $+$ 6 $*$ M
- $M = 6$ $+$ 6

More Disambiguating Grammars

- $M ::= M \ast M \mid (M) \mid M ++ \mid 6$
- Ambiguous because of associativity of \ast
- because of conflict between \ast and $++$:
 - $6 \ast 6 ++$
 - $6 \ast 6 ++$

- $M = 6 \ast 6$ $+$ $6 \ast 6$ $+$ 6
- $M = 6$ $*$ 6 $+$ 6
- $M = 6$ $+$ 6 $*$ M
- $M = 6$ $+$ 6

How to disambiguate?
- Choose associativity for \ast
- Choose precedence between \ast and $++$
- Four possibilities
- Four different approaches
- Some easier than others
- Will do --- You choose

Parser Code

- `<grammar>.mly` defines one parsing function per entry point
- Parsing function takes a lexing function (lexer buffer to token) and a lexer buffer as arguments
- Returns semantic attribute of corresponding entry point

Ocamlyacc Input

- File format:
  ```
  %{<header>%
  <declarations>%
  %<rules>%
  %<trailer>%
  ```
Ocamlyacc <header>
- Contains arbitrary Ocaml code
- Typically used to give types and functions needed for the semantic actions of rules and to give specialized error recovery
- May be omitted
- <footer> similar. Possibly used to call parser

Ocamlyacc <declarations>
- %token symbol ... symbol
 - Declare given symbols as tokens
- %token <type> symbol ... symbol
 - Declare given symbols as token constructors, taking an argument of type <type>
- %start symbol ... symbol
 - Declare given symbols as entry points; functions of same names in <grammar>.ml

Ocamlyacc <declarations>
- %type <type> symbol ... symbol
 - Specify type of attributes for given symbols. Mandatory for start symbols
- %left symbol ... symbol
- %right symbol ... symbol
- %nonassoc symbol ... symbol
 - Associate precedence and associativity to given symbols. Same line, same precedence; earlier line, lower precedence (broadest scope)

Ocamlyacc <rules>
- nonterminal:
 - symbol ... symbol { semantic_action }
 - ...
 - symbol ... symbol { semantic_action }
 -
- Semantic actions are arbitrary Ocaml expressions
- Must be of same type as declared (or inferred) for nonterminal
- Access semantic attributes (values) of symbols by position: $1 for first symbol, $2 to second ...

Example - Base types
(* File: expr.ml *)

```ocaml
type expr =
  | Term as Expr of term
  | Plus_Expr of (term * expr)
  | Minus_Expr of (term * expr)
and term =
  | Factor as Term of factor
  | Mult_Term of (factor * term)
  | Div_Term of (factor * term)
and factor =
  | Id as Factor of string
  | Parenthesized_Expr as Factor of expr
```

Example - Lexer (exprlex.mll)
```ocaml
{ (*open Exprparse*) }
let numeric = ['0'-'9']
let letter = ['a'-'z' 'A'-'Z']
rule token = parse
  | '+' {Plus_token}
  | '-' {Minus_token}
  | '*' {Times_token}
  | '/' {Divide_token}
  | '(' {Left_parenthesis}
  | ')' {Right_parenthesis}
  | letter (letter|numeric|'_'*) as id {Id_token id}
  | [' ' '	' '
'] {token lexbuf}
  | eof {EOL}
```

10/27/22
Example - Parser (exprparse.mly)

```ml
%
%{ open Expr
%
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%
```

Example - Parser (exprparse.mly)

```ml
expr:
  term { Term_as_Expr $1 }
  | term Plus_token expr { Plus_Expr ($1, $3) }
  | term Minus_token expr { Minus_Expr ($1, $3) }
```

Example - Parser (exprparse.mly)

```ml
term:
  factor { Factor_as_Term $1 }
  | factor Times_token term { Mult_Term ($1, $3) }
  | factor Divide_token term { Div_Term ($1, $3) }
```

Example - Parser (exprparse.mly)

```ml
factor:
  Id_token { Id_as_Factor $1 }
  | Left_parenthesis expr Right_parenthesis {Parenthesized_Expr_as_Factor $2 }
main:
  | expr EOL { $1 }
```

Example - Using Parser

```ml
# #use "expr.ml";;
... # use "exprparse.ml";;
... # use "exprlex.ml";;
... # let test s =
  let lexbuf = Lexing.from_string (s^"\n") in
token lexbuf;;
```

Example - Using Parser

```ml
# test "a + b";;
- : expr =
  Plus_Expr
  (Factor_as_Term (Id_as_Factor "a"),
   Term_as_Expr (Factor_as_Term (Id_as_Factor "b")))
```
LR Parsing

- Read tokens left to right (L)
- Create a rightmost derivation (R)
- How is this possible?
- Start at the bottom (left) and work your way up
- Last step has only one non-terminal to be replaced so is right-most
- Working backwards, replace mixed strings by non-terminals
- Always proceed so that there are no non-terminals to the right of the string to be replaced

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0 + 1) + 0 shift

= (0 + 1) + 0 shift

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0 + 1) + 0 shift

= (0 + 1) + 0 shift

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (<Sum> + 1) + 0 shift

=> (0 + 1) + 0 reduce

= (0 + 1) + 0 shift

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (<Sum> + 1) + 0 shift

= (<Sum> + 1) + 0 shift

= (<Sum> + 1) + 0 shift
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (<\text{Sum}\>)\)
\(<\text{Sum}\> + <\text{Sum}\>

\(<\text{Sum}\> =\)

\(\rightarrow (<\text{Sum}\> + 1 \cdot) + 0 \) reduce
\(= (<\text{Sum}\> + \cdot 1) + 0 \) shift
\(= (<\text{Sum}\> + 1 \cdot) + 0 \) shift
\(= (0 \cdot + 1) + 0 \) reduce
\(= (0 + 1) + 0 \) shift
\(= (0 + 1) + 0 \) shift

Example: \(<\text{Sum}\> = 0 \mid 1 \mid (<\text{Sum}\>)\)
\(<\text{Sum}\> + <\text{Sum}\>

\(<\text{Sum}\> =\)

\(\rightarrow (<\text{Sum}\> + <\text{Sum}\> \cdot) + 0 \) reduce
\(= (<\text{Sum}\> + \cdot 1) + 0 \) shift
\(= (<\text{Sum}\> + 1 \cdot) + 0 \) shift
\(= (0 \cdot + 1) + 0 \) reduce
\(= (0 + 1) + 0 \) shift
\(= (0 + 1) + 0 \) shift
Example: $\text{<Sum>} = 0 \mid 1 \mid (\text{<Sum>})$

\[
\begin{align*}
\text{<Sum>} & = > \\
& = (\text{<Sum>} + 0) \text{ reduce} \\
& = (\text{<Sum>} + 0) \text{ shift} \\
& = (\text{<Sum>} + 0) \text{ reduce} \\
& = (\text{<Sum>} + 0) \text{ shift} \\
& = (\text{<Sum>} + 1) + 0 \text{ reduce} \\
& = (\text{<Sum>} + 1) + 0 \text{ shift} \\
& = (0 + 1) + 0 \text{ reduce} \\
& = (0 + 1) + 0 \text{ shift}
\end{align*}
\]

Example: $\text{<Sum>} = 0 \mid 1 \mid (\text{<Sum>})$

\[
\begin{align*}
\text{<Sum>} & = > \text{<Sum>} + \text{<Sum>} \text{ reduce} \\
& = (\text{<Sum>} + 0) \text{ reduce} \\
& = (\text{<Sum>} + 0) \text{ shift} \\
& = (\text{<Sum>} + 0) \text{ reduce} \\
& = (\text{<Sum>} + 0) \text{ shift} \\
& = (\text{<Sum>} + 1) + 0 \text{ reduce} \\
& = (\text{<Sum>} + 1) + 0 \text{ shift} \\
& = (0 + 1) + 0 \text{ reduce} \\
& = (0 + 1) + 0 \text{ shift}
\end{align*}
\]

Example: (0 + 1) + 0

\[
\begin{align*}
& = (0 + 1) + 0 \\
& = (0 + 1) + 0 \\
& = (0 + 1) + 0
\end{align*}
\]
Example

\[
\text{<Sum> (0 + 1) + 0}
\]

Example

\[
\text{<Sum> (0 + 1) + 0}
\]

Example

\[
\text{<Sum> (0 + 1) + 0}
\]

Example

\[
\text{<Sum> (0 + 1) + 0}
\]

Example

\[
\text{<Sum> (0 + 1) + 0}
\]

Example

\[
\text{<Sum> (0 + 1) + 0}
\]
LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
- This is the hardest part, we omit here
- Rows labeled by states
- For Action, columns labeled by terminals and “end-of-tokens” marker
 (more generally strings of terminals of fixed length)
- For Goto, columns labeled by non-terminals

Action and Goto Tables

- Given a state and the next input, Action table says either
 - shift and go to state \(n \), or
 - reduce by production \(k \) (explained in a bit)
 - accept or error
- Given a state and a non-terminal, Goto table says
 - go to state \(m \)

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-of-tokens” symbol
1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next \(i \) tokens from token stream (toks) (don’t remove yet)
4. If top symbol on stack is state(\(n \)), look up action in Action table at (\(n \), toks)
5. If action = shift \(m \),
 a) Remove the top token from token stream and push it onto the stack
 b) Push state(\(m \)) onto stack
 c) Go to step 3
6. If action = reduce \(k \) where production \(k \) is E ::= u
 a) Remove 2 * length(u) symbols from stack (u and all the interleaved states)
 b) If new top symbol on stack is state(\(m \)), look up new state \(p \) in Goto(\(m \),E)
 c) Push E onto the stack, then push state(\(p \)) onto the stack
 d) Go to step 3
LR(i) Parsing Algorithm

7. If action = accept
 - Stop parsing, return success
8. If action = error,
 - Stop parsing, return failure

Adding Synthesized Attributes

- Add to each reduce a rule for calculating the new synthesized attribute from the component attributes
- Add to each non-terminal pushed onto the stack, the attribute calculated for it
- When performing a reduce,
 - gather the recorded attributes from each non-terminal popped from stack
 - Compute new attribute for non-terminal pushed onto stack

Shift-Reduce Conflicts

- **Problem**: can’t decide whether the action for a state and input character should be shift or reduce
 - Caused by ambiguity in grammar
 - Usually caused by lack of associativity or precedence information in grammar

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>) \mid <\text{Sum}> + <\text{Sum}>\)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 1 + 0</td>
<td>shift</td>
<td></td>
</tr>
<tr>
<td>-> 0 + 1 + 0</td>
<td>reduce</td>
<td></td>
</tr>
<tr>
<td>-> (<\text{Sum}> + 1 + 0)</td>
<td>shift</td>
<td></td>
</tr>
<tr>
<td>-> (<\text{Sum}> + <\text{Sum}> + 0)</td>
<td>reduce</td>
<td></td>
</tr>
<tr>
<td>-> (<\text{Sum}> + <\text{Sum}> + 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example - cont

- **Problem**: shift or reduce?
 - You can shift-shift-reduce-reduce or reduce-shift-shift-reduce
 - Shift first - right associative
 - Reduce first- left associative

Reduce - Reduce Conflicts

- **Problem**: can’t decide between two different rules to reduce by
 - Again caused by ambiguity in grammar
 - **Symptom**: RHS of one production suffix of another
 - Requires examining grammar and rewriting it
 - Harder to solve than shift-reduce errors
Example

- S ::= A | aB A ::= abc B ::= bc

 abc shift
 a bc shift
 ab c shift
 abc

- Problem: reduce by B ::= bc then by S ::= aB, or by A ::= abc then S ::= A?