Three Main Topics of the Course

I. New Programming Paradigm
II. Language Translation
III. Language Semantics
II : Language Translation

- Type Systems
- Lexing and Parsing
- Interpretation
Major Phases of a Compiler

Source Program
- Lex
- Tokens
- Parse

Abstract Syntax
- Semantic Analysis
- Symbol Table
- Translate

Intermediate Representation

Optimized IR
- Instruction Selection
- Unoptimized Machine-Specific Assembly Language

Optimized Machine-Specific Assembly Language
- Optimize
- Emit code

Machine Code
- Assembler

Relocatable Object Code
- Linker

Instruction Selection
- Optimize

Optimize
- Unoptimized Machine-Specific Assembly Language

Optimize
- Assembly Language

Emit code

Assembler

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel
Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)
Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics
Syntax is the description of which strings of symbols are meaningful expressions in a language.

It takes more than syntax to understand a language; need meaning (semantics) too.

Syntax is the entry point.
Syntax of English Language

- Pattern 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
</tr>
<tr>
<td>The dog</td>
<td>barked</td>
</tr>
<tr>
<td>Susan</td>
<td>yawned</td>
</tr>
</tbody>
</table>

- Pattern 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)
Elements of Syntax

- Expressions

 if ... then begin ... ; ... end else begin ... ; ... end

- Type expressions

 $\text{typexpr}_1 \rightarrow \text{typexpr}_2$

- Declarations (in functional languages)

 let $\text{pattern} = \text{expr}$

- Statements (in imperative languages)

 $a = b + c$

- Subprograms

 let $\text{pattern}_1 = \text{expr}_1$ in expr
Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)
Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory
Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs
Regular Expressions - Review

- Start with a given character set – a, b, c...
 - \(L(\varepsilon) = \{\"\"\} \)
- Each character is a regular expression
 - It represents the set of one string containing just that character
 - \(L(a) = \{a\} \)
If x and y are regular expressions, then xy is a regular expression

- It represents the set of all strings made from first a string described by x then a string described by y

If $L(x) = \{a, ab\}$ and $L(y) = \{c, d\}$ then $L(xy) = \{ac, ad, abc, abd\}$
If x and y are regular expressions, then $x \lor y$ is a regular expression.

It represents the set of strings described by either x or y.

If $L(x) = \{a, ab\}$ and $L(y) = \{c, d\}$, then $L(x \lor y) = \{a, ab, c, d\}$.

Regular Expressions

- If x is a regular expression, then so is (x)
 - It represents the same thing as x
- If x is a regular expression, then so is x^*
 - It represents strings made from concatenating zero or more strings from x

 If $L(x) = \{a, ab\}$ then $L(x^*) = \{\"\", a, ab, aa, aab, abab, \ldots\}$

- ε
 - It represents $\{\"\"\}$, set containing the empty string
- Φ
 - It represents $\{\}$, the empty set
Example Regular Expressions

- \((0 \lor 1)^*1\)
 - The set of all strings of 0’s and 1’s ending in 1, \(\{1, 01, 11, \ldots\}\)

- \(a^*b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b

- \(((01) \lor (10))^*\)
 - You tell me

Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Right Regular Grammars

- Subclass of BNF (covered in detail soon)
- Only rules of form
 \(<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}>\) or
 \(<\text{nonterminal}> ::= <\text{terminal}>\) or
 \(<\text{nonterminal}> ::= \varepsilon\)
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\equiv\) states; rule \(\equiv\) edge
Example

- **Right regular grammar:**

 \[
 \langle \text{Balanced} \rangle ::= \varepsilon \\
 \langle \text{Balanced} \rangle ::= 0 \langle \text{OneAndMore} \rangle \\
 \langle \text{Balanced} \rangle ::= 1 \langle \text{ZeroAndMore} \rangle \\
 \langle \text{OneAndMore} \rangle ::= 1 \langle \text{Balanced} \rangle \\
 \langle \text{ZeroAndMore} \rangle ::= 0 \langle \text{Balanced} \rangle
 \]

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - **Identifier** = \((a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z) (a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z \lor 0 \lor 1 \lor \ldots \lor 9)^*\)
 - **Digit** = \((0 \lor 1 \lor \ldots \lor 9)\)
 - **Number** = \(0 \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^* \lor \sim (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^*\)
 - **Keywords**: `if = if`, `while = while`,...
Lexing

- Different syntactic categories of “words”: tokens

Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml
How to do it

To use regular expressions to parse our input we need:

- Some way to identify the input string — call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.
How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call `ocamlllex `<filename>.mll`
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`
rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
 | ['0'-'9']+.'['0'-'9']+ { print_string "Float\n"}
 | ['a'-'z']+ { print_string "String\n"}
 | _ { main lexbuf }
{
 let newlexbuf = (Lexing.from_channel stdin) in
 main newlexbuf
}
General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
 | ...
 | ...
 | regexp { action }
and entrypoint [arg1... argn] = parse ...
and ...
{ trailer }
Ocamllex Input

- *header* and *trailer* contain arbitrary ocaml code put at top and bottom of `<filename>.ml`

- `let ident = regexp ...` Introduces `ident` for use in later regular expressions
<filename>.ml contains one lexing function per `entrypoint`

- Name of function is name given for `entrypoint`
- Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type `Lexing.lexbuf`
- `arg1... argn` are for use in `action`
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _: (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e+\): same as \(e e^*\)
- \(e?\): option - was \(e \lor \varepsilon\)
Ocamllex Regular Expression

- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters

- **ident**: abbreviation for earlier reg exp in let $ident = regexp$

- e_1 as id: binds the result of e_1 to id to be used in the associated action
More details can be found at

Version for ocaml 4.07:
https://v2.ocaml.org/releases/4.07/htmlman/lexyacc.html

Current version (ocaml 4.14)
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

(same, except formatting, I think)
Example: test.mll

```ml
{ type result = Int of int | Float of float | String of string }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```
Example : test.mll

rule main = parse

 (digits)'.'digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }

{ let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf }
Example

```ml
# use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
    result = <fun>
hi there 234 5.2
- : result = String "hi"
```

What happened to the rest?!?
Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"
Your Turn

- Work on MP8
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers
Problem

- How to get lexer to look at more than the first token at one time?
- Answer: *action* has to tell it to -- recursive calls
 - Not what you want to sew this together with ocamlyacc
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case
Example

```plaintext
rule main = parse
  (digits) '.' digits as f { Float
    (float_of_string f) :: main lexbuf}
| digits as n          { Int (int_of_string n) ::
  main lexbuf }       
| letters as s         { String s :: main
  lexbuf}             
| eof                   { [] } 
| _                      { main lexbuf }
```
Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

let open_comment = "(*)"
let close_comment = "*)"

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) :: main lexbuf }
 | letters as s { String s :: main lexbuf }
Dealing with comments

| open_comment { comment lexbuf }
| eof { [] } }
|_ { main lexbuf }
|_ { main lexbuf }

and comment = parse
 close_comment { main lexbuf }
|_ { comment lexbuf }
Dealing with nested comments

rule main = parse ...
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }
Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::
 main lexbuf}
| digits as n { Int (int_of_string n) :: main
 lexbuf }
| letters as s { String s :: main lexbuf}
| open_comment { (comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
Dealing with nested comments

and comment depth = parse

 open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf } |
| _ { comment depth lexbuf } |
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s
 - `<Sum>` ::= 0
 - `<Sum>` ::= 1
 - `<Sum>` ::= `<Sum>` + `<Sum>`
 - `<Sum>` ::= (`<Sum>`)
BNF Grammars

- Start with a set of characters, \(a, b, c, \ldots \)
 - We call these *terminals*
- Add a set of different characters, \(X, Y, Z, \ldots \)
 - We call these *nonterminals*
- One special nonterminal \(S \) called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)
BNF Derivations

- Given rules
 \[X ::= yZw \text{ and } Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \Rightarrow yZw \Rightarrow yvw \]
- Sequence of such replacements called \textit{derivation}
- Derivation called \textit{right-most} if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

```<Sum> =>```
BNF Derivations

- Pick a non-terminal

\( <\text{Sum}> \Rightarrow \)
BNF Derivations

- Pick a rule and substitute:
  - `<Sum> ::= <Sum> + <Sum>`

  `<Sum> => <Sum> + <Sum>`
BNF Derivations

- Pick a non-terminal:

\(<\text{Sum}\> => <\text{Sum}\> + <\text{Sum}\>\)
BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= ( <Sum> )`

`<Sum> => <Sum> + <Sum>`

`=> ( <Sum> ) + <Sum>`
BNF Derivations

Pick a non-terminal:

\[ \text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>\,} \]
\[ \Rightarrow (\text{<Sum>\,}) + \text{<Sum>\,} \]
BNF Derivations

- Pick a rule and substitute:

  - `<Sum> ::= <Sum> + <Sum>`
  - `<Sum> => <Sum> + <Sum>`

  => ( `<Sum>` ) + `<Sum>`

  => ( `<Sum> + <Sum>` ) + `<Sum>`
BNF Derivations

- Pick a non-terminal:

\[ \langle \text{Sum} \rangle \Rightarrow \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \]
\[ \Rightarrow ( \langle \text{Sum} \rangle ) + \langle \text{Sum} \rangle \]
\[ \Rightarrow ( \langle \text{Sum} \rangle + \langle \text{Sum} \rangle ) + \langle \text{Sum} \rangle \]
BNF Derivations

- Pick a rule and substitute:
  - `<Sum> ::= 1`

```
<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
```
BNF Derivations

- Pick a non-terminal:

- `<Sum>`  
  => `<Sum>` + `<Sum>`  
  => `( <Sum> ) + `<Sum>`  
  => `( <Sum> + `<Sum>` ) + `<Sum>`  
  => `( <Sum> + 1 ) + `<Sum>`
BNF Derivations

- Pick a rule and substitute:
  - \(<\text{Sum }>\) ::= 0

\(<\text{Sum}>\) => \(<\text{Sum}> + <\text{Sum}>\)

=> ( <Sum> ) + <Sum> 

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum> 

=> ( <Sum> + 1 ) + 0
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + <\text{Sum}> ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + 1 ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + 1 ) + 0
\]
Pick a rule and substitute

- `<Sum> ::= 0`

`<Sum> => <Sum> + <Sum>`

=> `( <Sum> ) + <Sum>`

=> `( <Sum> + <Sum> ) + <Sum>`

=> `( <Sum> + 1 ) + <Sum>`

=> `( <Sum> + 1 ) 0`

=> `( 0 + 1 ) + 0`
BNF Derivations

- $(0 + 1) + 0$ is generated by grammar

$$<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>$$
$$\Rightarrow ( <\text{Sum}> ) + <\text{Sum}>$$
$$\Rightarrow ( <\text{Sum}> + <\text{Sum}> ) + <\text{Sum}>$$
$$\Rightarrow ( <\text{Sum}> + 1 ) + <\text{Sum}>$$
$$\Rightarrow ( <\text{Sum}> + 1 ) + 0$$
$$\Rightarrow ( 0 + 1 ) + 0$$
Pick a non-terminal:

\[ \text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} ) + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} + \text{<Sum>} ) + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} + 1 ) + \text{<Sum>} \]