Solutions for Sample Questions for Midterm 2 (CS 421 Fall 2022)

Some of these questions may be reused for the exam.

0. Review and be able to write any give clause of \texttt{cps_exp} from MP5. On the exam, you would be given all the information you were given in MP5.

Solution:

(* Problem 5 *)

let rec \texttt{cps_exp} e k =
 match e with
 (*\[[x]\]k = k x*)
 \texttt{VarExp} x \rightarrow \texttt{VarCPS} (k, x)
 (*\[[e]\]k = k x*)
 | \texttt{ConstExp} n \rightarrow \texttt{ConstCPS} (k, n)
 (*\[[~ e]\]k = [][e]_(fun r \rightarrow k (~ r)) *)
 | \texttt{MonOpAppExp} (m, e) ->
 let r = freshFor (freeVarsInContCPS k)
 in \texttt{cps_exp} e (FnContCPS (r, MonOpAppCPS (k, m, r)))
 (*\[[e1 + e2]\]k = [[e2]]_ fun s \rightarrow [[e1]]_ fun r \rightarrow k (r + s)*)
 | \texttt{BinOpAppExp} (b, e1, e2) ->
 let v2 = freshFor (freeVarsInContCPS k @ freeVarsInExp e1) in
 let v1 = freshFor (v2 :: (freeVarsInContCPS k)) in
 let e2CPS =
 \texttt{cps_exp} e1 (FnContCPS (v1, BinOpAppCPS(k, b, v1, v2))) in
 \texttt{cps_exp} e2 (FnContCPS (v2, e2CPS))
 (*\[[if e1 then e2 else e3]\]k = [[e1]](fun r \rightarrow if r then [[e2]]k else [[e3]]k)*)
 | \texttt{IfExp} (e1,e2,e3) ->
 let r = freshFor (freeVarsInContCPS k @
 freeVarsInExp e2 @ freeVarsInExp e3) in
 let e2cps = \texttt{cps_exp} e2 k in
 let e3cps = \texttt{cps_exp} e3 k in
 \texttt{cps_exp} e1 (FnContCPS(r, IfCPS(r, e2cps, e3cps)))
 (*\[[e1 e2]\]k = [[e2]]_ fun v2 \rightarrow [[e1]]_ fun v1 \rightarrow k (v1 v2)*)
 | \texttt{AppExp} (e1,e2) ->
 let v2 = freshFor (freeVarsInContCPS k @ freeVarsInExp e1) in
 let v1 = freshFor (v2 :: freeVarsInContCPS k) in
 \texttt{cps_exp} e1 (FnContCPS (v1, AppCPS(k, v1, v2))) in
 \texttt{cps_exp} e2 (FnContCPS (v2, e1cps))
 (*[[fun x \rightarrow e]]k = k(fnk x kx \rightarrow [[e]]kx) *)
 | \texttt{FunExp} (x,e) ->
 let ecps = \texttt{cps_exp} e (ContVarCPS Kvar) in
 \texttt{FunCPS} (k, x, Kvar, ecps)
 (*\[[let x = e1 in e2]\]k = [[e1]]_ fun x \rightarrow [[e2]]k *)
 | \texttt{LetInExp} (x,e1,e2) ->
 let e2cps = \texttt{cps_exp} e2 k in
 let fx = \texttt{FnContCPS} (x, e2cps) in
 \texttt{cps_exp} e1 fx
(*[let rec f x = e1 in e2][|k = (FN f -> [[e2]][_k])(FIX f. FUN x -> fn kx => [[e1]][kx])*)
| LetRecInExp(f,x,e1,e2) ->
let e1cps = cps_exp e1 (ContVarCPS Kvar) in
let e2cps = cps_exp e2 k in
FixCPS(FnContCPS (f,e2cps),f,x,Kvar,e1cps)

1. Write the definition of an OCAML variant type \texttt{reg_exp} to express abstract syntax trees for regular expressions over a base character set of booleans. Thus, a boolean is a \texttt{reg_exp}, epsilon is a \texttt{reg_exp}, a parenthesized \texttt{reg_exp} is a \texttt{reg_exp}, the concatenation of two \texttt{reg_exp}'s is a \texttt{reg_exp}, the “choice” of two \texttt{reg_exp}'s is a \texttt{reg_exp}, and the Kleene star of a \texttt{reg_exp} is a \texttt{reg_exp}.

\textbf{Solution:}

\begin{verbatim}
 type reg_exp =
 Char of bool
 | Epsilon
 | Paren of reg_exp
 | Concat of (reg_exp * reg_exp)
 | Choice of (reg_exp * reg_exp)
 | Kleene_star of reg_exp
\end{verbatim}

2. Given the following OCAML datatype:

\begin{verbatim}
 type int_seq = Null | Snoc of (int_seq * int)
\end{verbatim}

write a tail-recursive function in OCAML \texttt{all_pos : int_seq \rightarrow bool} that returns \texttt{true} if every integer in the input \texttt{int_seq} to which \texttt{all_pos} is applied is strictly greater than 0 and \texttt{false} otherwise. Thus \texttt{all_pos (Snoc(Snoc(Snoc(Null, 3), 5), 7))} should returns \texttt{true}, but \texttt{all_pos (Snoc(Null, -1))} and \texttt{all_pos (Snoc(Snoc(Null, 3),0))} should both return \texttt{false}.

\textbf{Solution:}

let rec all_pos s =
 (match s
 with Null -> true
 | Snoc(seq, x) -> if x <= 0 then false else all_pos seq);;

3. Given a polymorphic type derivation for \{\} |- \texttt{id = fun x \rightarrow x} in \texttt{id id true : bool}

\textbf{Solution:}

Let $\Gamma = \{ \text{id : } \forall \ 'a. \ 'a \rightarrow 'a \}$

\begin{verbatim}
 Instance: \(\forall \ 'a \rightarrow \text{bool} \rightarrow \text{bool}\)
 Var ------------------------------
 $\Gamma |\text{- id : (bool \rightarrow bool) \rightarrow bool \rightarrow bool}$

 Instance: \(\forall \ 'a \rightarrow \text{bool}\)
 Var ------------------------------
 $\Gamma |\text{- id : bool \rightarrow bool}$

 Const

 Var ------------------------------
 $\{ \text{x : 'a } \} |\text{- x : 'a}$

 Fun --------------------------------
 $\{ \} |\text{- fun x \rightarrow x}$

 Let --------------------------------
 $\{ \} |\text{- let id = fun x \rightarrow x}$
\end{verbatim}
4. Write the clause for \texttt{gather_exp_ty_substitution} for a function expression implementing the rule:
\[
[x : \tau_1] + \Gamma \vdash e : \tau_2 \mid \sigma \\
\Gamma \vdash (\text{fun } x \to e) : \tau \mid \text{unify}\{(\sigma(\tau), \sigma(\tau_1 \to \tau_2))\} \circ \sigma
\]
Refer to MP6 for the details of the types. You should assume that all other clauses for \texttt{gather_exp_ty_substitution} have been provided.

Solution:
\[
\text{let rec gather_exp_ty_substitution gamma exp tau =} \\
\text{let judgment = ExpJudgment(gamma, exp, tau) in} \\
\text{match exp} \\
\text{with . . .} \\
\mid \text{FunExp(x,e) ->} \\
\text{let tau1 = fresh() in} \\
\text{let tau2 = fresh() in} \\
\text{(match gather_exp_ty_substitution} \\
\text{ (ins_env gamma x (polyTy_of_monoTy tau1)) e tau2} \\
\text{with None -> None} \\
\text{| Some (pf, sigma) ->} \\
\text{(match unify \{(monoTy_lift_subst sigma tau,} \\
\text{monoTy_lift_subst sigma (mk_fun_ty tau1 tau2))\}]} \\
\text{with None -> None} \\
\text{| Some sigma1 ->} \\
\text{Some(Proof([pf],judgment), subst_compose sigma1 sigma)))}
\]

5. Give a (most general) unifier for the following unification instance. Capital letters denote variables of unification. Show your work by listing the operation performed in each step of the unification and the result of that step.
\[
\{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)\}
\]

Solution:
\[
\text{Unify } \{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)\}
\]
\[
= \text{Unify } \{h(y) = Y; f(Z,x) = f(Y,W)\} \circ \{X \to f(g(x),W), Y \to h(y)\} \quad \text{by eliminate} \ (X = f(g(x),W))
\]
\[
= \text{Unify } \{Y = h(y); x=W\} \circ \{X \to f(g(x),W), Y \to h(y)\} \quad \text{by orient} \ (h(y) = Y)
\]
\[
= \text{Unify } \{f(Z,x) = f(h(y),W)\} \circ \{X \to f(g(x),W), Y \to h(y)\} \quad \text{by eliminate} \ (Y = h(y))
\]
\[
= \text{Unify } \{Z = h(y); x=W\} \circ \{X \to f(g(x),W), Y \to h(y), Z \to h(y)\} \quad \text{by decompose} \ (f(Z,x) = f(h(y),W))
\]
\[
= \text{Unify } \{x = W\} \circ \{X \to f(g(x),W), Y \to h(y), Z \to h(y)\} \quad \text{by eliminate} \ (Z = h(y))
\]
\[
= \text{Unify } \{W = x\} \circ \{X \to f(g(x),W), Y \to h(y), Z \to h(y), W \to x\} \quad \text{by orient} \ (x = W)
\]
\[
= \text{Unify}\{} \circ \{X \to f(g(x),x), Y \to h(y), Z \to h(y), W \to x\} \quad \text{by eliminate} \ (W = x)
\]
Answer: \{X \to f(g(x),x), Y \to h(y), Z \to h(y), W \to x\}

6. For each of the following descriptions, give a regular expression over the alphabet \{a,b,c\}, and a regular grammar that generates the language described.

a. The set of all strings over \{a, b, c\}, where each string has at most one a

Solution: \((b \lor c)^*(a \lor \varepsilon) (b \lor c)^*\)

\[
\langle S \rangle ::= b\langle S \rangle \mid c\langle S \rangle \mid a\langle NA \rangle \mid \varepsilon
\]
b. The set of all strings over \{a, b, c\}, where, in each string, every b is immediately followed by at least one c.

Solution: \((a \lor c)^* (bc(a \lor c))^*\)

\[
\begin{align*}
&S ::= aS | cS | bC | \varepsilon \\
&C ::= cS
\end{align*}
\]

c. The set of all strings over \{a, b, c\}, where every string has length a multiple of four.

Solution: \(((a \lor b \lor c) (a \lor b \lor c) (a \lor b \lor c) (a \lor b \lor c))^*\)

\[
\begin{align*}
&S ::= aTH | bTH | cTH | \varepsilon \\
&TH ::= aTW | bTW | cTW \\
&TW ::= aO | bO | cO \\
&O ::= aS | bS | cS
\end{align*}
\]
7. Consider the following grammar:

```
<S> ::= <A> | <A> <S>
<A> ::= <Id> | ( <B>
<B> ::= <Id> ] | <Id><B> | ( <B>
<Id> ::= 0 | 1
```

For each of the following strings, give a parse tree for the following expression as an <S>, if one exists, or write “No parse” otherwise:

a. \(0 \ 1 \ (1] \ ((1 \ 0] \ 1\)

Solution:

```
(S)
  /
(A)
  |
(B)
  |
(Id)
0
(Id)
1
  |
(Id)
1
```

b. \(0 \ (1 \ 0 \ 1]\)

Solution:

```
(S)
  /
(A)
  |
(Id)
0
  |
(Id)
1
```

"No parse tree"

Solution: No parse tree
8. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are terminals):

\[S \rightarrow A \ a \ B \ | \ B \ a \ A \]
\[A \rightarrow b \ | \ c \]
\[B \rightarrow a \ | \ b \]

Solution: String: bab

9. Write an unambiguous grammar generating the set of all strings over the alphabet \{0, 1, +, -\}, where + and – are infixed operators which both associate to the left and such that + binds more tightly than -.

Solution:

\[
\begin{align*}
&S ::= \texttt{<plus>} \mid S - \texttt{<plus>} \\
&\texttt{<plus>} ::= \texttt{<id>} \mid \texttt{<plus>} + \texttt{<id>} \\
&\texttt{<id>} ::= 0 \mid 1
\end{align*}
\]