Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of the program, assuming another property (pre-condition) of the state holds before execution.
Axiomatic Semantics

- Goal: Derive statements of form \(\{P\} \ C \ \{Q\} \)
 - \(P, Q \) logical statements about state,
 - \(P \) precondition, \(Q \) postcondition,
 - \(C \) program

- Example: \(\{x = 1\} \ x := x + 1 \ \{x = 2\} \)
Axiomatic Semantics

- **Approach**: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

 \(\{P\} \ C \ \{Q\} \)

 where \(C \) is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs
Axiomatic Semantics

- An expression \(\{P\} C \{Q\} \) is a *partial correctness* statement

- For *total correctness* must also prove that \(C \) terminates (i.e. doesn’t run forever)
 - Written: \([P] C [Q]\)

- Will only consider partial correctness here
Language

- We will give rules for simple imperative language

<command>
 ::= <variable> := <term>
 | <command>; ... ;<command>
 | if <statement> then <command> else <command> fi
 | while <statement> do <command> od

- Could add more features, like for-loops
Substitution

- Notation: $P[e/v]$ (sometimes $P[v <- e]$)
- Meaning: Replace every v in P by e
- Example:

 $$(x + 2) [y-1/x] = ((y – 1) + 2)$$
The Assignment Rule

\{P[e/x]\} \ x := e \ {P}

Example:

\{ ? \} \ x := y \ {x = 2}
The Assignment Rule

\[
\{ P \ [e/x] \} \ x := e \ \{ P \}
\]

Example:

\[
\{ _ = 2 \} \ x := y \ \{ x = 2 \}
\]
The Assignment Rule

\[
\{ P [e/x] \} \ x := e \ { P }
\]

Example:

\[
\{ y = 2 \} \ x := y \ { x = 2 }
\]
The Assignment Rule

\[
\{P \ [e/x] \} \ x := e \ {P}
\]

Examples:

\[
\{y = 2\} \ x := y \ \{x = 2\}
\]

\[
\{y = 2\} \ x := 2 \ \{y = x\}
\]

\[
\{x + 1 = n + 1\} \ x := x + 1 \ \{x = n + 1\}
\]

\[
\{2 = 2\} \ x := 2 \ \{x = 2\}
\]
What is the weakest precondition of
\[x := x + y \{x + y = w - x}\]?

\[
\begin{array}{c}
\{ ? \} \\
x := x + y \\
\{x + y = w - x\}
\end{array}
\]
What is the weakest precondition of

\[x := x + y \{x + y = w - x}\]?

\[\{(x + y) + y = w - (x + y)\}\]

\[x := x + y\]

\[\{x + y = w - x\}\]
Precondition Strengthening

\[P \Rightarrow P' \quad \{P'\} \subseteq \{Q\} \]
\[\{P\} \subseteq \{Q\} \]

- Meaning: If we can show that P implies P' ($P \Rightarrow P'$) and we can show that $\{P'\} \subseteq \{Q\}$, then we know that $\{P\} \subseteq \{Q\}$.
- P is *stronger* than P' means $P \Rightarrow P'$.
Precondition Strengthening

Examples:

\[x = 3 \implies x < 7 \quad \{ x < 7 \} \quad x := x + 3 \quad \{ x < 10 \} \]

\[\{ x = 3 \} \quad x := x + 3 \quad \{ x < 10 \} \]

\[\text{True} \implies 2 = 2 \quad \{ 2 = 2 \} \quad x := 2 \quad \{ x = 2 \} \]

\[\{ \text{True} \} \quad x := 2 \quad \{ x = 2 \} \]

\[x = n \implies x + 1 = n + 1 \quad \{ x + 1 = n + 1 \} \quad x := x + 1 \quad \{ x = n + 1 \} \]

\[\{ x = n \} \quad x := x + 1 \quad \{ x = n + 1 \} \]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \ast x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \ast x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x = 3\} & \quad x := x \ast x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \ast x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x \ast x < 25\} & \quad x := x \ast x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \ast x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x \cdot x < 25\} & \quad x := x \cdot x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\}
\end{align*}
\]
Sequencing

\[
\begin{align*}
\{P\} C_1 \{Q\} \quad \{Q\} C_2 \{R\} \\
\{P\} C_1; C_2 \{R\}
\end{align*}
\]

Example:

\[
\begin{align*}
\{z = z \land z = z\} & \quad x := z & \quad \{x = z \land z = z\} \\
\{x = z \land z = z\} & \quad y := z & \quad \{x = z \land y = z\} \\
\{z = z \land z = z\} & \quad x := z; y := z & \quad \{x = z \land y = z\}
\end{align*}
\]
Sequencing

\[
\begin{align*}
\{P\} & C_1 \{Q\} & \{Q\} & C_2 \{R\} \\
\{P\} & C_1 ; C_2 \{R\}
\end{align*}
\]

Example:

\[
\begin{align*}
\{z = z \land z = z\} & \ x := z \quad \{x = z \land z = z\} \\
\{x = z \land z = z\} & \ y := z \quad \{x = z \land y = z\} \\
\{z = z \land z = z\} & \ x := z ; y := z \quad \{x = z \land y = z\}
\end{align*}
\]
Postcondition Weakening

\[\{P\} \implies \{Q'\} \quad Q' \implies Q \]
\[\{P\} \implies \{Q\} \]

Example:
\[\{z = z \land z = z\} \ x := z; \ y := z \ {x = z \land y = z} \]
\[(x = z \land y = z) \implies (x = y) \]
\[\{z = z \land z = z\} \ x := z; \ y := z \ {x = y} \]
Rule of Consequence

$P \Rightarrow P' \quad \{P'\} \ C \ \{Q'\} \quad Q' \Rightarrow Q$

\{P\} \ C \ \{Q\}

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses $P \Rightarrow P'$ and $Q' \Rightarrow Q$
If Then Else

\begin{align*}
\{P \text{ and } B\} & \quad C_1 \quad \{Q\} \\
\{P \text{ and } \neg B\} & \quad C_2 \quad \{Q\}
\end{align*}

\{P\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi } \{Q\}

Example: Want

\{y=a\}

if \(x < 0\) then \(y := y-x\) else \(y := y+x\) fi

\{y=a+\lvert x\rvert\}

Suffices to show:

(1) \(\{y=a \& x<0\} \ y := y-x \ \{y=a+\lvert x\rvert\}\) and

(4) \(\{y=a \& \neg(x<0)\} \ y := y+x \ \{y=a+\lvert x\rvert\}\)
{y=a&x<0} y:=y-x \{y=a+|x|\}

(3) (y=a&x<0) \Rightarrow y-x=a+|x|

(2) \{y-x=a+|x|\} y:=y-x \{y=a+|x|\}

(1) \{y=a&x<0\} y:=y-x \{y=a+|x|\}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom

(3) Because x<0 \Rightarrow |x| = -x
\[
\{ y = a \land \neg(x < 0) \} \ y := y + x \ \{ y = a + |x| \}
\]

(6) \quad (y = a \land \neg(x < 0)) \implies (y + x = a + |x|)

(5) \quad \{ y + x = a + |x| \} \quad y := y + x \quad \{ y = a + |x| \}

(4) \quad \{ y = a \land \neg(x < 0) \} \ y := y + x \ \{ y = a + |x| \}

(4) Reduces to (5) and (6) by Precondition Strengthening

(5) Follows from assignment axiom

(6) Because \(\neg(x < 0) \implies |x| = x \)
(1) \{ y=a \& x<0 \} y:=y-x \{ y=a+|x| \}

(4) \{ y=a \& \text{not}(x<0) \} y:=y+x \{ y=a+|x| \}

\hline
\{ y=a \}

if x < 0 then y:= y-x else y:= y+x
\{ y=a+|x| \}

By the if_then_else rule
We need a rule to be able to make assertions about **while** loops.

- Inference rule because we can only draw conclusions if we know something about the body

Let’s start with:

\[
\{ \ ? \ \} \ C \ \{ \ ? \ \} \\
\{ \ ? \ \} \ \text{while} \ B \ \text{do} \ C \ \text{od} \ \{ \ P \ \}
\]
While

The loop may never be executed, so if we want P to hold after, it had better hold before, so let’s try:

\[
\{ \ ? \ \} \ C \ \{ \ ? \ \}
\]
\[
\{ P \} \ \text{while} \ B \ \text{do} \ C \ \text{od} \ \{ P \}
\]
While

- If all we know is P when we enter the **while** loop, then we all we know when we enter the body is $(P \text{ and } B)$

- If we need to know P when we finish the **while** loop, we had better know it when we finish the loop body:

$$\{ P \text{ and } B \} \ C \ \{ P \}$$

$$\{ P \} \ \textbf{while} \ B \ \textbf{do} \ C \ \textbf{od} \ \{ P \}$$
We can strengthen the previous rule because we also know that when the loop is finished, \(\text{not } B \) also holds.

Final **while** rule:

\[
\begin{align*}
\{ P \text{ and } B \} & \quad C & \quad \{ P \} \\
\{ P \} & \quad \text{while } B \quad \text{do } & \quad C \quad \text{od} & \quad \{ P \text{ and not } B \}
\end{align*}
\]
While

\[
\{ P \text{ and } B \} \quad C \quad \{ P \} \\
\{ P \} \text{ while } B \text{ do } C \text{ od } \{ P \text{ and not } B \}
\]

- P satisfying this rule is called a _loop invariant_ because it must hold before and after the each iteration of the loop.
While

- **While** rule generally needs to be used together with precondition strengthening and postcondition weakening.

- There is **NO** algorithm for computing the correct P; it requires intuition and an understanding of why the program works.
Example

Let us prove

\{x \geq 0 \text{ and } x = a\}

\text{fact} := 1;

\text{while } x > 0 \text{ do (} \text{fact} := \text{fact} \times x; \ x := x - 1 \text{) od}

\{\text{fact} = a!\}
Example

We need to find a condition P that is true both before and after the loop is executed, and such that

$$(P \text{ and not } x > 0) \Rightarrow (\text{fact} = a!)$$
Example

- First attempt:
 \[a! = \text{fact} \times (x!) \]

- Motivation:

- What we want to compute: \(a! \)
- What we have computed: \(\text{fact} \)
 which is the sequential product of \(a \) down through \((x + 1) \)
- What we still need to compute: \(x! \)
Example

By post-condition weakening suffices to show
1. \{x \geq 0 \text{ and } x = a\}

 \text{fact} := 1;

 \text{while } x > 0 \text{ do (fact := fact * x; } x := x - 1) \text{ od}

 \{a! = \text{fact} * (x!) \text{ and not } (x > 0)\}

and

2. \{a! = \text{fact} * (x!) \text{ and not } (x > 0) \} \implies \{\text{fact} = a!\}
Problem

2. \(\{a! = \text{fact} \times (x!) \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}\)
 - Don’t know this if \(x < 0\)
 - Need to know that \(x = 0\) when loop terminates
 - Need a new loop invariant
 - Try adding \(x \geq 0\)
 - Then will have \(x = 0\) when loop is done
Second try, combine the two:

\[P = \{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\]

Again, suffices to show

1. \{x\geq0 \text{ and } x = a\}

 \[
 \text{fact} := 1;
 \text{while } x > 0 \text{ do (fact := fact } \times x; x := x - 1) \text{ od}
 \{P \text{ and not } x > 0\}
 \]

and

2. \{P \text{ and not } x > 0\} \Rightarrow \{\text{fact} = a!\}
Example

For 2, we need

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}

But \{x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{x = 0\} \text{ so}

\text{fact} \times (x!) = \text{fact} \times (0!) = \text{fact}

Therefore

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}
Example

- For 1, by the sequencing rule it suffices to show

3. \{x \geq 0 \text{ and } x = a\}
 fact := 1
 \{a! = fact \times (x!) \text{ and } x \geq 0\}

And

4. \{a! = fact \times (x!) \text{ and } x \geq 0\}
 while x > 0 do
 (fact := fact \times x; x := x - 1) od
 \{a! = fact \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\}
Example

- Suffices to show that
 \[\{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \}\]
 holds before the while loop is entered and that if
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}\]
 holds before we execute the body of the loop, then
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}\]
 holds after we execute the body
Example

By the assignment rule, we have

\{a! = 1 \cdot (x!) \text{ and } x \geq 0\}

\text{fact} := 1

\{a! = \text{fact} \cdot (x!) \text{ and } x \geq 0\}

Therefore, to show (3), by precondition strengthening, it suffices to show

\(x\geq 0 \text{ and } x = a\) \implies

\(a! = 1 \cdot (x!) \text{ and } x \geq 0\)
Example

\[(x \geq 0 \text{ and } x = a) \implies (a! = 1 \times (x!) \text{ and } x \geq 0)\]

holds because \(x = a \implies x! = a!\)

Have that \{a! = \text{fact} \times (x!) \text{ and } x \geq 0\} holds at the start of the while loop
Example

To show (4):

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}
while \(x > 0\) do
(fact := fact \times x; x := x − 1)
od
\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\}
we need to show that
\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}
is a loop invariant
Example

We need to show:
{(a! = fact * (x!)) and x >= 0 and x > 0}
(fact = fact * x; x := x – 1)
{(a! = fact * (x!)) and x >= 0}

We will use assignment rule, sequencing rule and precondition strengthening
Example

By the assignment rule, we have

\[
\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}
\]

\[
x := x - 1
\]

\[
\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}
\]

By the sequencing rule, it suffices to show

\[
\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}
\]

\[
\text{fact} = \text{fact} \times x
\]

\[
\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}
\]
Example

By the assignment rule, we have that

\[\{ (a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0 \} \]

\ \text{fact} = \text{fact} \times x

\[\{ (a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0 \} \]

By Precondition strengthening, it suffices to show that

\[(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0 \)

\[\Rightarrow (a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0 \)
However

\[\text{fact} \times x \times (x - 1)! = \text{fact} \times (x!) \]

and \((x > 0) \Rightarrow x - 1 \geq 0\)

since \(x\) is an integer, so

\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \Rightarrow \\
\{(a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0\}\
Therefore, by precondition strengthening

\{(a! = fact \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\text{fact} = \text{fact} \times x

\{(a! = fact \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

This finishes the proof