Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421
Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Example

- Ambiguous grammar:
 \[
 \langle \text{exp} \rangle ::= 0 \mid 1 \mid \langle \text{exp} \rangle + \langle \text{exp} \rangle \\
 \quad \mid \langle \text{exp} \rangle * \langle \text{exp} \rangle
 \]
- String with more then one parse:
 \[
 0 + 1 + 0 \\
 1 * 1 + 1
 \]
- Source of ambiguity: associativity and precedence

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
 \[
 \langle \text{exp} \rangle ::= 0 \mid 1 \mid \langle \text{exp} \rangle + \langle \text{exp} \rangle \\
 \quad \mid \langle \text{exp} \rangle * \langle \text{exp} \rangle
 \]
- Choice: + and * left assoc, * higher prec than +
- First Problem: * higher prec than +
 - Needs \langle \text{ntp} \rangle for all strings that can not be topmost parsed as a plus
 - Assume all other nonterminals mean want
- Ambiguous grammar:
 \[
 \langle \text{exp} \rangle ::= 0 \mid 1 \mid \langle \text{exp} \rangle + \langle \text{exp} \rangle \\
 \quad \mid \langle \text{exp} \rangle * \langle \text{exp} \rangle \\
 \]
- Example:
 \[
 0 + 1 + 0 \\
 1 * 1 + 1
 \]
- Choice: + and * left assoc, * higher prec than +
- Second Problem: * left assoc
 - Need \langle \text{ntpm} \rangle for all strings that can not be topmost parsed as a plus or a mult
 - Assume all other nonterminals mean want
- Ambiguous grammar:
 \[
 \langle \text{exp} \rangle ::= 0 \mid 1 \\
 \]
 \[
 \langle \text{ntp} \rangle ::= 0 \mid 1 \mid \langle \text{ntp} \rangle * \langle \text{ntpm} \rangle
 \]
- Example:
 \[
 0 + 1 + 0 \\
 1 * 1 + 1
 \]
Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
 \[\text{exp} ::= 0 | 1 | \text{exp} + \text{exp} \]

 \[| \text{exp} \times \text{exp} \]
- Choice: + and * left assoc, * higher prec than +
- Third problem: + left assoc
 - Need \text{ntp} for all strings that can not be topmost parsed as a plus
 - Already have it
- \[\text{exp} ::= \text{exp} + \text{ntp} | \text{ntp} \]

 \[\text{ntp} ::= \text{ntpm} | \text{ntp} \times \text{ntpm} \]

 \[\text{ntpm} ::= 0 | 1 \]

10/4/07

Disambiguating a Grammar

- \[\text{exp} ::= 0|1| b\text{exp} | \text{exp}a \]

 | \[\text{exp}m\text{exp} \]
- Want
 - \text{a} has higher precedence than \text{b},
 - which in turn has higher precedence than \text{m},
 - and such that \text{m} associates to the left.
- Higher precedence translates to longer derivation chain

11/8/19

Disambiguating a Grammar – Take 2

- \[\text{exp} ::= 0|1| b\text{exp} | \text{exp}a \]

 | \[\text{exp}m\text{exp} \]
- Want \text{b} has higher precedence than \text{m}, which in turn has higher precedence than \text{a}, and such that \text{m} associates to the right.
 - \text{b 0 m 1 a} \rightarrow \text{b 0 m 1 a}
 - \text{0 a m b 1 OK}
 - \text{b 0 m 1 m 0 a}
 - \text{b 0 m 0 a m 1}

11/8/19

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
 \[\text{exp} ::= 0 | 1 | \text{exp} + \text{exp} \]

 \[| \text{exp} \times \text{exp} \]
- Change names \text{ntpm} = \text{id},

 \[\text{ntp} = \text{mult_exp} \]
- Becomes

 \[\text{exp} ::= \text{mult_exp} | \text{exp} + \text{mult_exp} \]

 \[\text{mult_exp} ::= \text{id} | \text{mult_exp} \times \text{id} \]

11/8/19

Disambiguating a Grammar

- \[\text{exp} ::= 0|1| b\text{exp} | \text{exp}a \]

 | \[\text{exp}m\text{exp} \]
- Want \text{a} has higher precedence than \text{b}, which in turn has higher precedence than \text{m}, and such that \text{m} associates to the left.
- Higher precedence translates to longer derivation chain

 \[\text{exp} ::= \text{exp}m\text{not m} | \text{not m} \]

 \[\text{not m} ::= b \text{not m} | \text{not b m} \]

 \[\text{not b m} ::= \text{not b m}a | 0 | 1 \]

11/8/19
Disambiguating a Grammar – Take 2

- `<exp>::= 0|1| b<exp> | <exp>a
 | <exp>m<exp>
- Want `b` has higher precedence than `m`, which in turn has higher precedence than `a`, and such that `m` associates to the right.
- `<exp> ::=
 <no a m> | <not m> m <no a> | <exp> a
 <no a> ::= <no a m> | <no a m> m <no a>
 <not m> ::= <no a m> | <exp> a
 <no a m> ::= b <no a m> | 0 | 1`
Ocamlyacc <rules>

- **nonterminal**: symbol ... symbol { semantic_action } |
 ... |
 symbol ... symbol { semantic_action }

- Semantic actions are arbitrary Ocaml expressions
- Must be of same type as declared (or inferred) for nonterminal
- Access semantic attributes (values) of symbols by position: $1 for first symbol, $2 to second ...

Example - Base types

(* File: expr.ml *)

type expr =
 Term_as_Expr of term |
 Plus_Expr of (term * expr) |
 Minus_Expr of (term * expr)

and term =
 Factor_as_Term of factor |
 Parenthesized_Expr_as_Factor of expr

Example - Lexer (exprlex.mll)

{ (*open Exprparse*) }

let numeric = ["0" - "9"]

let letter =["a" - "z" "A" - "Z"]

rule token = parse
 | "" {Plus_token}
 | "." {Minus_token}
 | "+" {Times_token}
 | "/" {Divide_token}
 | "(" {Left_parenthesis}
 | ")" {Right_parenthesis}
 | letter (letter|numeric|"_")* as id {Id_token id}
 | [" 	
"] {token lexbuf}
 | eof {EOL}

Example - Parser (exprparse.mly)

%{ open Expr
%
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%

Example - Parser (exprparse.mly)

expr:
 term { Term_as_Expr $1 }
 | term Plus_token expr { Plus_Expr ($1, $3) }
 | term Minus_token expr { Minus_Expr ($1, $3) }

Example - Parser (exprparse.mly)

term:
 factor { Factor_as_Term $1 }
 | factor Times_token term { Mult_Term ($1, $3) }
 | factor Divide_token term { Div_Term ($1, $3) }
Example - Parser (exprparse.mly)

```plaintext
factor:
   Id_token
   { Id_as_Factor $1 } |
   Left_parenthesis expr Right_parenthesis
   {Parenthesized_Expr_as_Factor $2 }
main:
   | expr EOL
   { $1 }
```

Example - Using Parser

```plaintext
# #use "expr.ml";;
... # #use "exprparse.ml";;
... # #use "exprlex.ml";;
... # let test s =
  let lexbuf = Lexing.from_string (s"\n") in
       main token lexbuf;;
```

Example - Using Parser

```plaintext
# test "a + b";;
- : expr =
  Plus_Expr
  (Factor_as_Term (Id_as_Factor "a"),
   Term_as_Expr (Factor_as_Term
     (Id_as_Factor "b")))
```

Example: <Sum> = 0 | 1 | (<Sum>) | <Sum> + <Sum>

```plaintext
<Sum> =>
| ( 0 + 1 ) + 0   shift
```

LR Parsing

- Read tokens left to right (L)
- Create a rightmost derivation (R)
- How is this possible?
- Start at the bottom (left) and work your way up
- Last step has only one non-terminal to be replaced so is right-most
- Working backwards, replace mixed strings by non-terminals
- Always proceed so that there are no non-terminals to the right of the string to be replaced

Example: <Sum> = 0 | 1 | (<Sum>) | <Sum> + <Sum>

```plaintext
<Sum> =>
| ( ( 0 + 1 ) + 0  shift
```
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (0 + 1) + 0 & \text{reduce} \\
\Rightarrow & (0 + 1) + 0 & \text{shift} \\
\Rightarrow & (0 + 1) + 0 & \text{shift}
\end{align*}
11/8/19 31

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (<\text{Sum}> \cdot 1) + 0 & \text{shift} \\
\Rightarrow & (0 + 1) + 0 & \text{reduce} \\
\Rightarrow & (0 + 1) + 0 & \text{reduce} \\
\Rightarrow & (0 + 1) + 0 & \text{shift} \\
\Rightarrow & (0 + 1) + 0 & \text{shift}
\end{align*}
11/8/19 32

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift}
\end{align*}
11/8/19 33

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift}
\end{align*}
11/8/19 34

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift}
\end{align*}
11/8/19 35

Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)
\<\text{Sum}> \Rightarrow
\begin{align*}
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift} \\
\Rightarrow & (<\text{Sum}> + 1) + 0 & \text{shift}
\end{align*}
11/8/19 36
Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]

Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]

Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]

Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]

Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]

Example

\[
\left(\begin{array}{c}
0 \\
+ \\
1 \\
\end{array} \right) + 0
\]
Example

\[
\left(0 + 1 \right) + 0
\]

Example

\[
\left(0 + 1 \right) + 0
\]

Example

\[
\left(0 + 1 \right) + 0
\]

Example

\[
\left(0 + 1 \right) + 0
\]

Example

\[
\left(0 + 1 \right) + 0
\]

Example

\[
\left(0 + 1 \right) + 0
\]
LR(i) Parsing Algorithm

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals

Action and Goto Tables

- Given a state and the next input, Action table says either
 - **shift** and go to state \(n \), or
 - **reduce** by production \(k \) (explained in a bit)
- **accept** or **error**
- Given a state and a non-terminal, Goto table says
 - go to state \(m \)

LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
 - This is the hardest part, we omit here
 - Rows labeled by states
 - For Action, columns labeled by terminals and “end-of-tokens” marker
 - (more generally strings of terminals of fixed length)
 - For Goto, columns labeled by non-terminals

Example

\[
\langle \text{Sum} \rangle + \langle 0 \rangle + \langle 1 \rangle + 0
\]

Example

\[
\langle \text{Sum} \rangle + \langle 0 \rangle + \langle 1 \rangle + 0
\]
LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-of-tokens” symbol
1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks) (don’t remove yet)
4. If top symbol on stack is state(n), look up action in Action table at (n, toks)

5. If action = **shift** m,
 a) Remove the top token from token stream and push it onto the stack
 b) Push state(m) onto stack
 c) Go to step 3

6. If action = **reduce** k where production k is $E ::= u$
 a) Remove 2 * length(u) symbols from stack (u and all the interleaved states)
 b) If new top symbol on stack is state(m), look up new state p in Goto(m,E)
 c) Push E onto the stack, then push state(p) onto the stack
 d) Go to step 3

7. If action = **accept**
 - Stop parsing, return success
8. If action = **error**,
 - Stop parsing, return failure

Adding Synthesized Attributes
- Add to each reduce a rule for calculating the new synthesized attribute from the component attributes
- Add to each non-terminal pushed onto the stack, the attribute calculated for it
- When performing a reduce,
 - gather the recorded attributes from each non-terminal popped from stack
 - Compute new attribute for non-terminal pushed onto stack

Shift-Reduce Conflicts
- **Problem**: can’t decide whether the action for a state and input character should be shift or reduce
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar
Example: \(<\text{Sum}> = 0 \ | \ 1 \ | \ (<\text{Sum}>), \)
\[<\text{Sum}> + <\text{Sum}> \]
- \(0 + 1 + 0 \) shift
- \(0 + 1 + 0 \) reduce
- \(<\text{Sum}> + 1 + 0 \) shift
- \(<\text{Sum}> + 1 + 0 \) shift
- \(<\text{Sum}> + 1 + 0 \) shift
- \(<\text{Sum}> + <\text{Sum}> + 0 \) reduce
- \(<\text{Sum}> + <\text{Sum}> + 0 \) reduce

Example - cont

Problem: shift or reduce?
- You can shift-shift-reduce-reduce or reduce-shift-shift-reduce
- Shift first - right associative
- Reduce first - left associative

Reduce - Reduce Conflicts

Problem: can’t decide between two different rules to reduce by
- Again caused by ambiguity in grammar
- Symptom: RHS of one production suffix of another
- Requires examining grammar and rewriting it
- Harder to solve than shift-reduce errors

Example

\[S ::= A \ | \ aB \quad A ::= abc \quad B ::= bc \]
- \(abc \) shift
- \(a \ bc \) shift
- \(ab \ c \) shift
- \(abc \) shift
- Problem: reduce by \(B ::= bc \) then by \(S ::= aB \), or by \(A ::= abc \) then \(S ::= A \)?

Recursive Descent Parsing

Recursive descent parsers are a class of parsers derived fairly directly from BNF grammars
- A recursive descent parser traces out a parse tree in top-down order, corresponding to a left-most derivation (LL - left-to-right scanning, leftmost derivation)

Recursive Descent Parsing

Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all phrases that the nonterminal can generate
- Each nonterminal in right-hand side of a rule corresponds to a recursive call to the associated subprogram
Recursive Descent Parsing

- Each subprogram must be able to decide how to begin parsing by looking at the left-most character in the string to be parsed
- May do so directly, or indirectly by calling another parsing subprogram
- Recursive descent parsers, like other top-down parsers, cannot be built from left-recursive grammars
- Sometimes can modify grammar to suit

Sample Grammar

\[
<\text{expr}> ::= <\text{term}> | <\text{term}> + <\text{expr}> \\
| <\text{term}> - <\text{expr}>
\]

\[
<\text{term}> ::= <\text{factor}> | <\text{factor}> * <\text{term}> \\
| <\text{factor}> / <\text{term}>
\]

\[
<\text{factor}> ::= \text{id} | (<\text{expr}>)
\]

Tokens as OCaml Types

- + - * / () <id>
- Becomes an OCaml datatype

```
type token =
  Id_token of string
| Left_parenthesis | Right_parenthesis
| Times_token | Divide_token
| Plus_token | Minus_token
```

Parse Trees as Datatypes

\[
<\text{expr}> ::= <\text{term}> | <\text{term}> + <\text{expr}> \\
| <\text{term}> - <\text{expr}>
\]

```
type expr =
  Term_as_Expr of term 
| Plus_Expr of (term * expr) 
| Minus_Expr of (term * expr)
```

Parse Trees as Datatypes

\[
<\text{term}> ::= <\text{factor}> | <\text{factor}> * <\text{term}> \\
| <\text{factor}> / <\text{term}>
\]

```
and term =
  Factor_as_Term of factor 
| Mult_Term of (factor * term) 
| Div_Term of (factor * term)
```

Parse Trees as Datatypes

\[
<\text{factor}> ::= \text{id} | (<\text{expr}>)
\]

```
and factor =
  Id_as_Factor of string 
| Parenthesized_Expr_as_Factor of expr
```
Parsing Lists of Tokens

- Will create three mutually recursive functions:
 - `expr : token list -> (expr * token list)`
 - `term : token list -> (term * token list)`
 - `factor : token list -> (factor * token list)`
- Each parses what it can and gives back parse and remaining tokens

Parsing an Expression

```
<expr> ::= <term> [( + | - ) <expr> ]
```

```
let rec expr tokens =
  (match term tokens
   with ( term_parse , tokens_after_term ) ->
    (match tokens_after_term
      with ( Plus_token :: tokens_after_plus) ->
```

Parsing an Plus Expression

```
<expr> ::= <term> [( + | - ) <expr> ]
```

```
let rec expr tokens =
  (match term tokens
   with ( term_parse , tokens_after_term ) ->
    (match tokens_after_term
      with ( Plus_token :: tokens_after_plus) ->
```
Parsing a Plus Expression

\[
<\text{expr}> ::= <\text{term}> + <\text{expr}>
\]

(match \text{expr} tokens_after_plus

with (\text{expr}_\text{parse} , \text{tokens}_\text{after}_\text{expr}) ->
(Plus_Expr (\text{term}_\text{parse} , \text{expr}_\text{parse}),
\text{tokens}_\text{after}_\text{expr})
)

Building Plus Expression Parse Tree

Parsing a Minus Expression

\[
<\text{expr}> ::= <\text{term}> + <\text{expr}>
\]

| (Minus_token :: tokens_after_minus) ->

(match \text{expr} tokens_after_minus

with (\text{expr}_\text{parse} , \text{tokens}_\text{after}_\text{expr}) ->
(Minus_Expr (\text{term}_\text{parse} , \text{expr}_\text{parse}),
\text{tokens}_\text{after}_\text{expr})
)

Parsing an Expression as a Term

\[
<\text{expr}> ::= <\text{term}>
\]

| _ -> (Term_as_Expr \text{term}_\text{parse} ,
\text{tokens}_\text{after}_\text{term}))

- Code for \text{term} is same except for replacing addition with multiplication and subtraction with division
Parsing Factor as Id

\[\langle \text{factor} \rangle ::= \langle \text{id} \rangle \]

and factor tokens =
(match tokens
 with (Id_token id_name :: tokens_after_id) =
 (Id_as_Factor id_name, tokens_after_id)

Error Cases

- What if no matching right parenthesis?
 | _ -> raise (Failure "No matching rparen")))
- What if no leading id or left parenthesis?
 | _ -> raise (Failure "No id or lparen"));;

Parsing Factor as Parenthesized Expression

\[\langle \text{factor} \rangle ::= (\langle \text{expr} \rangle) \]

| factor (Left_parenthesis :: tokens) =
 (match expr tokens
 with (expr_parse , tokens_after_expr) ->

(a + b) * c - d

expr [Left_parenthesis; Id_token "a";
 Plus_token; Id_token "b";
 Right_parenthesis; Times_token;
 Id_token "c"; Minus_token;
 Id_token "d"];;
\[(a + b) * c - d\]

\[a + b * c - d\]

\[a + b * c - d\]

\[a + b) * c - d\]

Parsing Whole String

- Q: How to guarantee whole string parses?
- A: Check returned tokens empty

let parse tokens =
match expr tokens
with (expr_parse, []) -> expr_parse
| _ -> raise (Failure "No parse")

- Fixes <expr> as start symbol
Streams in Place of Lists

- More realistically, we don't want to create the entire list of tokens before we can start parsing.
- We want to generate one token at a time and use it to make one step in parsing.
- Can use \((\text{token} \times \text{(unit -> token)})\) or \((\text{token} \times \text{(unit -> token option)})\) in place of a token list.

Problems for Recursive-Descent Parsing

- Left Recursion:
 \[A ::= Aw\]
 translates to a subroutine that loops forever.
- Indirect Left Recursion:
 \[A ::= Bw\]
 \[B ::= Av\]
 causes the same problem.

Problems for Recursive-Descent Parsing

- Parser must always be able to choose the next action based only on the very next token.
- Pairwise Disjointedness Test: Can we always determine which rule (in the non-extended BNF) to choose based on just the first token.

Pairwise Disjointedness Test

- For each rule
 \[A ::= y\]
 Calculate
 \[
 \text{FIRST}(y) = \{a | y =>* aw\} \cup \{\epsilon | \text{if } y =>* \epsilon\}
 \]
- For each pair of rules \[A ::= y\] and \[A ::= z\], require \[
 \text{FIRST}(y) \cap \text{FIRST}(z) = \{\}
 \]

Example

Grammar:
\[
\langle S \rangle ::= \langle A \rangle \ a \ \langle B \rangle \ b\\
\langle A \rangle ::= \langle A \rangle \ b \mid b\\
\langle B \rangle ::= a \ \langle B \rangle \mid a\\
\]

\[
\text{FIRST}(\langle A \rangle \ b) = \{b\}\\
\text{FIRST}(b) = \{b\}\\
\]
Rules for \(\langle A \rangle\) not pairwise disjoint.

Eliminating Left Recursion

- Rewrite grammar to shift left recursion to right recursion.
- Changes associativity.
- Given
 \[
 \langle \text{expr} \rangle ::= \langle \text{expr} \rangle + \langle \text{term} \rangle \text{ and}\\
 \langle \text{expr} \rangle ::= \langle \text{term} \rangle\\
 \]
- Add new non-terminal \(\langle e \rangle\) and replace above rules with
 \[
 \langle \text{expr} \rangle ::= \langle \text{term} \rangle <\langle e \rangle\\
 \langle e \rangle ::= + \langle \text{term} \rangle <\langle e \rangle \mid \epsilon\\
 \]

Factoring Grammar

- Test too strong: Can’t handle <expr> ::= <term> [(+ | -) <expr>]
- Answer: Add new non-terminal and replace above rules by <expr> ::= <term><e> <e> ::= + <term><e> <e> ::= - <term><e> <e> ::= ε
- You are delaying the decision point

Example

Both <A> and have problems: Transform grammar to:

<S> ::= <A> a b <S> ::= <A> a b <A> ::= <A> b | b <A> ::= b<A1> ::= a | a <B1> ::= a <B1> | ε

You are delaying the decision point

Programming Languages & Compilers

Three Main Topics of the Course

I
New Programming Paradigm

II
Language Translation

III
Language Semantics

Programming Languages & Compilers

Order of Evaluation

I
New Programming Paradigm

II
Language Translation

III
Language Semantics

Specification to Implementation

Programming Languages & Compilers

III : Language Semantics

Operational Semantics

Lambda Calculus

Axiomatic Semantics

Programming Languages & Compilers

Order of Evaluation

Operational Semantics

Lambda Calculus

Axiomatic Semantics

Specification to Implementation

CS422

CS426

CS477
Semantics
- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

Dynamic semantics
- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics

Dynamic Semantics
- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics
- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics
- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics
- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written:
 - \{Precondition\} Program \{Postcondition\}
- Source of idea of loop invariant
Denotational Semantics

- Construct a function M assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Natural Semantics

- Aka Structural Operational Semantics, aka “Big Step Semantics”
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like
 $$(C, m) \Downarrow m'$$
 or
 $$(E, m) \Downarrow v$$

Simple Imperative Programming Language

- $I \in$ Identifiers
- $N \in$ Numerals
- $B ::= \text{true} | \text{false} | B \& B | B \lor B | \text{not } B$
- $E ::= N | I | E + E | E * E | E - E | - E$
- $C ::= \text{skip} | C; C | I ::= E | \text{if } B \text{ then } C \text{ else } C \text{ fi } | \text{while } B \text{ do } C \text{ od}$

Natural Semantics of Atomic Expressions

- Identifiers: $(I,m) \Downarrow m(I)$
- Numerals are values: $(N,m) \Downarrow N$
- Booleans: $(\text{true},m) \Downarrow \text{true}$
 $(\text{false },m) \Downarrow \text{false}$

Booleans:

- $(B, m) \Downarrow \text{false}$
- $(B, m) \Downarrow \text{true}$
- $(B \& B’, m) \Downarrow \text{false}$
- $(B \& B’, m) \Downarrow \text{true}$
- $(B \lor B’, m) \Downarrow \text{false}$
- $(B \lor B’, m) \Downarrow \text{true}$
- $(\text{not } B, m) \Downarrow \text{false}$
- $(\text{not } B, m) \Downarrow \text{true}$

Relations

- $(E, m) \Downarrow U$ $(E’, m) \Downarrow V$ $U \sim V = b$
- $(E \sim E’, m) \Downarrow b$

- By $U \sim V = b$, we mean does (the meaning of) the relation \sim hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and V
Arithmetic Expressions

\[(E, m) \downarrow U \quad (E', m) \downarrow V \quad U \text{ op } V = N\]
\[(E \text{ op } E', m) \downarrow N\]

where \(N\) is the specified value for \(U \text{ op } V\)

Commands

Skip: \[(\text{skip}, m) \downarrow m\]

Assignment: \[(E, m) \downarrow V \quad (I::=E,m) \downarrow m[I <-- V]\]

Sequencing: \[(C,m) \downarrow m' \quad (C',m') \downarrow m'' \quad (C;C', m) \downarrow m''\]

If Then Else Command

\[(B,m) \downarrow true \quad (C,m) \downarrow m' \quad (\text{if } B \text{ then } C \text{ else } C' \text{ fi}, m) \downarrow m'\]

\[(B,m) \downarrow false \quad (C',m) \downarrow m' \quad (\text{if } B \text{ then } C' \text{ else } C \text{ fi}, m) \downarrow m'\]

While Command

\[(B,m) \downarrow false \quad (\text{while } B \text{ do } C \text{ od}, m) \downarrow m\]

\[(B,m) \downarrow true \quad (C,m) \downarrow m' \quad (\text{while } B \text{ do } C \text{ od}, m) \downarrow m'' \quad (C;C', m) \downarrow m''\]

Example: If Then Else Rule

\[(x > 5, \{x -> 7\}) \downarrow? \quad (x > 5 \text{ then } y:= 2 + 3 \text{ else } y:=3 + 4 \text{ fi}, \{x -> 7\}) \downarrow?\]
Example: Arith Relation

\[
\begin{align*}
? > ? &= ? \\
(x, \langle x \rightarrow 7 \rangle) &\Downarrow ? \quad (5, \langle x \rightarrow 7 \rangle) &\Downarrow ? \\
(x > 5, \langle x \rightarrow 7 \rangle) &\Downarrow ? \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 133

Example: Identifier(s)

\[
\begin{align*}
7 > 5 &= \text{true} \\
(x, \langle x \rightarrow 7 \rangle) &\Downarrow 7 \quad (5, \langle x \rightarrow 7 \rangle) &\Downarrow 5 \\
(x > 5, \langle x \rightarrow 7 \rangle) &\Downarrow \text{true} \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 134

Example: Arith Relation

\[
\begin{align*}
7 > 5 &= \text{true} \\
(x, \langle x \rightarrow 7 \rangle) &\Downarrow 7 \quad (5, \langle x \rightarrow 7 \rangle) &\Downarrow 5 \\
(x > 5, \langle x \rightarrow 7 \rangle) &\Downarrow \text{true} \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 135

Example: If Then Else Rule

\[
\begin{align*}
7 > 5 &= \text{true} \\
(x, \langle x \rightarrow 7 \rangle) &\Downarrow 7 \quad (5, \langle x \rightarrow 7 \rangle) &\Downarrow 5 \\
(x > 5, \langle x \rightarrow 7 \rangle) &\Downarrow \text{true} \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 136

Example: Assignment

\[
\begin{align*}
7 > 5 &= \text{true} \\
(x, \langle x \rightarrow 7 \rangle) &\Downarrow 7 \quad (5, \langle x \rightarrow 7 \rangle) &\Downarrow 5 \\
(x > 5, \langle x \rightarrow 7 \rangle) &\Downarrow \text{true} \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 137

Example: Arith Op

\[
\begin{align*}
? + ? &= ? \\
(2, \langle x \rightarrow 7 \rangle) &\Downarrow ? \quad (3, \langle x \rightarrow 7 \rangle) &\Downarrow ? \\
(2 + 3, \langle x \rightarrow 7 \rangle) &\Downarrow ? \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\langle x \rightarrow 7 \rangle &\Downarrow ?
\end{align*}
\]

11/8/19 138
Example: Numerals

\[2 + 3 = 5 \]

\[(2, \{x \mapsto 7\}) \downarrow 2 \quad (3, \{x \mapsto 7\}) \downarrow 3 \]

\[7 > 5 = \text{true} \]

\[(x, \{x \mapsto 7\}) \downarrow 7 \quad (5, \{x \mapsto 7\}) \downarrow 5 \]

\[(x > 5, \{x \mapsto 7\}) \downarrow \text{true} \]

\[\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi),} \{x \mapsto 7\} \]

Let in Command

\[(E, m) \downarrow v \quad (C, m[I \mapsto v]) \downarrow m' \]

(\text{let } I = E \text{ in } C, m) \downarrow m''

\[\text{Where } m''(y) = m'(y) \text{ for } y \neq I \text{ and} \]
\[m''(I) = m(I) \text{ if } m(I) \text{ is defined,} \]
\[\text{and } m''(I) \text{ is undefined otherwise} \]
Example

\[(x,(x->5)) \Downarrow 5\] \(5, (3,(x->5)) \Downarrow 3\)
\[(x+3,(x->5)) \Downarrow 8\]
\[(5,(x->17)) \Downarrow 5\]
\[x := x+3, (x->5) \Downarrow (x->8)\]
\[(let x = 5 in (x:=x+3), (x -> 17)) \Downarrow (x->17)\]

Comment

- Simple Imperative Programming Language introduces variables *implicitly* through assignment
- The let-in command introduces scoped variables *explicitly*
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A **compiler** from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An **interpreter** of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next “state”
 - To get final value, put in a loop

Natural Semantics Example

- \[\text{compute}_\text{exp} (\text{Var}(v), m) = \text{look}_\text{up}\ v \ m\]
- \[\text{compute}_\text{exp} (\text{Int}(n), _) = \text{Num} \ (n)\]
- ... \[\text{compute}_\text{com}(\text{IfExp}(b,c1,c2),m) = \]
 - if \[\text{compute}_\text{exp} (b,m) = \text{Bool}(\text{true})\]
 - then \[\text{compute}_\text{com} (c1,m)\]
 - else \[\text{compute}_\text{com} (c2,m)\]}
Natural Semantics Example

- $\text{compute_com}(\text{While}(b,c), m) =$
- \quad if $\text{compute_exp}(b, m) = \text{Bool}(\text{false})$
- \quad then m
- \quad else $\text{compute_com}($
- \quad \quad $\text{While}(b,c), \text{compute_com}(c,m))$

- May fail to terminate - exceed stack limits
- Returns no useful information then