Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Example

Unify \{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \} = \\
\{ y \rightarrow f(z); x \rightarrow g(f(z), f(z)) \}

f(x) = f(g(f(z), y)) \\
\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))

g(y, y) = x \\
\rightarrow g(f(z), f(z)) = g(f(z), f(z))
Example of Failure: Decompose

- Unify\{((f(x,g(y)) = f(h(y),x))}\}
- Decompose: \((f(x,g(y)) = f(h(y),x)) \)
- = Unify \{(x = h(y)), (g(y) = x)\}
- Orient: \((g(y) = x) \)
- = Unify \{(x = h(y)), (x = g(y))\}
- Eliminate: \((x = h(y)) \)
- Unify \{(h(y) = g(y))\} o \{x \rightarrow h(y)\}
- No rule to apply! Decompose fails!
Example of Failure: Occurs Check

- Unify\{ (f(x, g(x)) = f(h(x), x)) \}
- Decompose: \(f(x, g(x)) = f(h(x), x) \)
 \[= \text{Unify } \{ (x = h(x)), (g(x) = x) \} \]
- Orient: \(g(x) = x \)
 \[= \text{Unify } \{ (x = h(x)), (x = g(x)) \} \]
- No rules apply.
Three Main Topics of the Course

I. New Programming Paradigm
II. Language Translation
III. Language Semantics
II : Language Translation

- Type Systems
- Lexing and Parsing
- Interpretation
Major Phases of a Compiler

- Source Program
- Lex Tokens
- Parse
- Abstract Syntax
- Semantic Analysis
- Symbol Table
- Translate
- Intermediate Representation
- Optimize
- Optimized IR
- Instruction Selection
- Unoptimized Machine-Specific Assembly Language
- Optimize
- Optimized Machine-Specific Assembly Language
- Emit code
- Assembly Language
- Assembler
- Relocatable Object Code
- Linker
- Machine Code

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel
Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)
Meta-discourse

- Language Syntax and Semantics
 - Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
 - Semantics
 - Natural Semantics
 - Transition Semantics
Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language.
- It takes more than syntax to understand a language; need meaning (semantics) too.
- Syntax is the entry point.
Syntax of English Language

- Pattern 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
</tr>
<tr>
<td>The dog</td>
<td>barked</td>
</tr>
<tr>
<td>Susan</td>
<td>yawned</td>
</tr>
</tbody>
</table>

- Pattern 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)
Elements of Syntax

- Expressions

 if ... then begin ... ; ... end else begin ... ; ... end

- Type expressions

 $\text{typexpr}_1 \rightarrow \text{typexpr}_2$

- Declarations (in functional languages)

 let $\text{pattern} = \text{expr}$

- Statements (in imperative languages)

 $a = b + c$

- Subprograms

 let $\text{pattern}_1 = \text{expr}_1$ in expr
Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)
Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing:** Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - **Parsing:** Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata

- Context-free grammars, BNF grammars, syntax diagrams

- Whole family more of grammars and automata – covered in automata theory
Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs
Regular Expressions - Review

- Start with a given character set – a, b, c...

- Each character is a regular expression
 - It represents the set of one string containing just that character
 - \(L(a) = \{a\} \)
Regular Expressions

- If \(x \) and \(y \) are regular expressions, then \(xy \) is a regular expression.
 - It represents the set of all strings made from first a string described by \(x \) then a string described by \(y \)

 If \(L(x) = \{a, ab\} \) and \(L(y) = \{c, d\} \)
 then \(L(xy) = \{ac, ad, abc, abd\} \)
Regular Expressions

- If \(x \) and \(y \) are regular expressions, then \(x \lor y \) is a regular expression.
 - It represents the set of strings described by either \(x \) or \(y \).

 If \(L(x) = \{a, ab\} \) and \(L(y) = \{c, d\} \)
 then \(L(x \lor y) = \{a, ab, c, d\} \)
Regular Expressions

- If \(x \) is a regular expression, then so is \((x)\)
 - It represents the same thing as \(x \)
- If \(x \) is a regular expression, then so is \(x^* \)
 - It represents strings made from concatenating zero or more strings from \(x \)
 - If \(L(x) = \{a,ab\} \) then \(L(x^*) = \{",a,ab,aa,aab,abab,\ldots\} \)
- \(\epsilon \)
 - It represents \(\{"\}\) , set containing the empty string
- \(\Phi \)
 - It represents \(\{\} \) , the empty set
Example Regular Expressions

- \((0 \lor 1)^* 1\)
 - The set of all strings of 0’s and 1’s ending in 1, \(\{1, 01, 11, \ldots\}\)

- \(a^* b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b

- \(((01) \lor (10))^*\)
 - You tell me

- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Regular Grammars

- Subclass of BNF (covered in detail soon)
- Only rules of form
 - `<nonterminal> ::= <terminal> <nonterminal>` or
 - `<nonterminal> ::= <terminal>` or
 - `<nonterminal> ::= ε`
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals ≈ states; rule ≈ edge
Example

- Regular grammar:

 \[
 \text{<Balanced>} ::= \epsilon \\
 \text{<Balanced>} ::= 0\text{<OneAndMore>} \\
 \text{<Balanced>} ::= 1\text{<ZeroAndMore>} \\
 \text{<OneAndMore>} ::= 1\text{<Balanced>} \\
 \text{<ZeroAndMore>} ::= 0\text{<Balanced>}
 \]

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z) (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z ∨ 0 ∨ 1 ∨ ... ∨ 9)*
 - Digit = (0 ∨ 1 ∨ ... ∨ 9)
 - Number = 0 ∨ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)* ∨ ~ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)*
 - Keywords: if = if, while = while,...
Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Lexing

- Different syntactic categories of “words”: tokens

Example:

- Convert sequence of characters into sequence of strings, integers, and floating point numbers.

"asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml
How to do it

To use regular expressions to parse our input we need:

- Some way to identify the input string — call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.
How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call

 `ocamllex `<filename>.mll`
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`
rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
 | ['0'-'9']+'.['0'-'9']+ { print_string "Float\n"}
 | ['a'-'z']+ { print_string "String\n"}
 | _ { main lexbuf }
{
 let newlexbuf = (Lexing.from_channel stdin) in
 main newlexbuf
}
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
| ...
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse ...and ...
{ trailer }
header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml

let ident = regexp ... Introduces ident for use in later regular expressions
Ocamlllex Input

- `<filename>.ml` contains one lexing function per `entrypoint`
 - Name of function is name given for `entrypoint`
 - Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type `Lexing.lexbuf`
- `arg1... argn` are for use in `action`
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _ : (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamlllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e^+\): same as \(e \ e^*\)
- \(e?\): option - was \(e_1 \vee \varepsilon\)
Ocamlllex Regular Expression

- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters
- **ident**: abbreviation for earlier regex in
 let ident = regexp
- e_1 as **id**: binds the result of e_1 to **id** to be used in the associated **action**
More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
Example: test.mll

```ml
{ type result = Int of int | Float of float | String of string }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```
Example: test.mll

```
rule main = parse
  (digits)'.'digits as f  { Float (float_of_string f) }
| digits as n              { Int (int_of_string n) }
| letters as s             { String s}
| _  { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in 
print_newline ();
 main newlexbuf  }
```
Example

#use "test.ml";;

...

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
 result = <fun>

hi there 234 5.2
- : result = String "hi"

What happened to the rest?!?
Example

```ocaml
# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"
```
Your Turn

- Work on ML5
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers
Problem

- How to get lexer to look at more than the first token at one time?
- Answer: *action* has to tell it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case
Example

rule main = parse
 (digits) '\.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| eof { [] }
| _ { main lexbuf }
Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

let open_comment = "(*)"
let close_comment = "*)"

rule main = parse
 (digits) "." digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf}
Dealing with comments

<table>
<thead>
<tr>
<th>open_comment</th>
<th>{ comment lexbuf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>eof</td>
<td>{ [] }</td>
</tr>
<tr>
<td>_</td>
<td>{ main lexbuf }</td>
</tr>
</tbody>
</table>

and comment = parse

 close_comment { main lexbuf }

 _ { comment lexbuf }
Dealing with nested comments

rule main = parse ...
 | open_comment { comment 1 lexbuf }
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }
Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::
 main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| open_comment { (comment 1 lexbuf}
| eof { [] } }
| _ { main lexbuf }

10/25/19
Dealing with nested comments

and comment depth = parse

 open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1

 then main lexbuf

 else comment (depth - 1) lexbuf }

| _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

 - `<Sum>` ::= 0
 - `<Sum>` ::= 1
 - `<Sum>` ::= `<Sum>` + `<Sum>`
 - `<Sum>` ::= (`<Sum>`)
BNF Grammars

- Start with a set of characters, \textit{a}, \textit{b}, \textit{c}, ...
 - We call these \textit{terminals}
- Add a set of different characters, \textit{X}, \textit{Y}, \textit{Z}, ...
 - We call these \textit{nonterminals}
- One special nonterminal \textit{S} called \textit{start symbol}
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)
BNF Derivations

- Given rules
 \[X ::= yZw \text{ and } Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \Rightarrow yZw \Rightarrow yvw \]

- Sequence of such replacements called *derivation*

- Derivation called *right-most* if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

\(<\text{Sum}\> \Rightarrow\)
BNF Derivations

- Pick a non-terminal

\[<\text{Sum}> \Rightarrow \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

 `<Sum>` => `<Sum> + <Sum>`
BNF Derivations

- Pick a non-terminal:

```plaintext
<Sum>  =>  <Sum> + <Sum >
```
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= (<Sum>)`
 - `<Sum> => <Sum> + <Sum>`
 - `=> (<Sum>) + <Sum>`
 - `=> (<Sum>) + <Sum>`
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>
BNF Derivations

Pick a rule and substitute:
- `<Sum> ::= <Sum> + <Sum>`

`<Sum> => <Sum> + <Sum>`

=> `(<Sum>) + <Sum>`

=> `(<Sum> + <Sum>) + <Sum>"
Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum} > + <\text{Sum}>) + <\text{Sum}>
\]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`

 `<Sum> => <Sum> + <Sum>`

 => `(<Sum>) + <Sum>`

 => `(<Sum> + <Sum>) + <Sum>`

 => `(<Sum> + 1) + <Sum>`
BNF Derivations

Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}>\]
Pick a rule and substitute:

- `<Sum> ::= 0`

`<Sum> => <Sum> + <Sum>`

=> (`<Sum>) + <Sum>

=> (`<Sum> + <Sum>) + <Sum>

=> (`<Sum> + 1) + `<Sum`

=> (`<Sum> + 1) + 0`
BNF Derivations

- Pick a non-terminal:

\[
\text{<Sum> } \Rightarrow \text{<Sum> + <Sum>}
\]

\[
\Rightarrow (\text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum> + <Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum> + 1}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum> + 1}) + 0
\]
BNF Derivations

- Pick a rule and substitute
 - `<Sum> ::= 0`

 `<Sum> => <Sum> + <Sum>`

 `=> (<Sum>) + <Sum>`

 `=> (<Sum> + <Sum>) + <Sum>`

 `=> (<Sum> + 1) + <Sum>`

 `=> (<Sum> + 1) 0`

 `=> (0 + 1) + 0`
BNF Derivations

- \((0 + 1) + 0\) is generated by grammar

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}>\]
\[\Rightarrow (<\text{Sum}> + 1) + 0\]
\[\Rightarrow (0 + 1) + 0\]
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)