Example

Unify \{(f(x) = f(g(f(z), y))), (g(y, y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}

\[
f(f(x, y)) = f(g(f(z), y))
\]
\[
\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))
\]
\[
g(y, y) = x
\]
\[
\rightarrow g(f(z), f(z)) = g(f(z), f(z))
\]

Example of Failure: Decompose

- Unify \{(f(x, g(y)) = f(h(y), x))\}
- Decompose: \((f(x, g(y)) = f(h(y), x)) \)
- = Unify \{(x = h(y)), (g(y) = x)\}
- Orient: \(g(y) = x \)
- = Unify \{(x = h(y)), (x = g(y))\}
- Eliminate: \(x = h(y) \)
- Unify \{(h(y) = g(y))\} o \{x \rightarrow h(y)\}
- No rule to apply! Decompose fails!

Example of Failure: Occurs Check

- Unify \{(f(x, g(x)) = f(h(x), x))\}
- Decompose: \((f(x, g(x)) = f(h(x), x)) \)
- = Unify \{(x = h(x)), (g(x) = x)\}
- Orient: \(g(x) = x \)
- = Unify \{(x = h(x)), (x = g(x))\}
- No rules apply.

Programming Languages & Compilers

Three Main Topics of the Course

I New Programming Paradigm
II Language Translation
III Language Semantics
Major Phases of a Compiler

Source Program
- Lex
- Tokens
- Parse
- Abstract Syntax
- Semantic Analysis
- Symbol Table
- Translate
- Intermediate Representation
- Optimize
- Optimized IR
- Instruction Selection
- Unoptimized Machine-Specific Assembly Language
- Optimize
- Optimized Machine-Specific Assembly Language
- Emit code
- Assembly Language
- Assembler
- Relocatable Object Code
- Linker
- Machine Code

Where We Are Going Next?
- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Meta-discourse
- Language Syntax and Semantics
 - Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
 - Semantics
 - Natural Semantics
 - Transition Semantics

Language Syntax
- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language
- Pattern 1
<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
</tr>
<tr>
<td>The dog</td>
<td>barked</td>
</tr>
<tr>
<td>Susan</td>
<td>knew</td>
</tr>
</tbody>
</table>
- Pattern 2
<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>

Elements of Syntax
- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)
Elements of Syntax

- Expressions
 - if ... then begin ... ; ... end else begin ... ; ... end
- Type expressions
 - $\text{typexpr}_1 -> \text{typexpr}_2$
- Declarations (in functional languages)
 - let $\text{pattern} = \text{expr}$
- Statements (in imperative languages)
 - $a = b + c$
- Subprograms
 - let $\text{pattern}_1 = \text{expr}_1 \text{ in } \text{expr}$

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions - Review

- Start with a given character set – $a, b, c...$
 - Each character is a regular expression
 - It represents the set of one string containing just that character
 - $L(a) = \{a\}$
Regular Expressions

- If x and y are regular expressions, then xy is a regular expression
 - It represents the set of all strings made from first a string described by x then a string described by y
 - If $L(x) = \{a,ab\}$ and $L(y) = \{c,d\}$
 then $L(xy) = \{ac,ad,abc,abd\}$

Example Regular Expressions

- $(0 \lor 1)^*1$
 - The set of all strings of 0’s and 1’s ending in 1, $\{ 1, 01, 11, … \}$

Regular Grammars

- Subclass of BNF (covered in detail soon)
 - Only rules of form $\langle \text{nonterminal} \rangle ::= \langle \text{terminal} \rangle \langle \text{nonterminal} \rangle$ or $\langle \text{nonterminal} \rangle ::= \langle \text{terminal} \rangle$ or $\langle \text{nonterminal} \rangle ::= \varepsilon$
 - Defines same class of languages as regular expressions
 - Important for writing lexers (programs that convert strings of characters into strings of tokens)
 - Close connection to nondeterministic finite state automata – nonterminals \equiv states; rule \equiv edge

Example

- Regular grammar:
 - $<\text{Balanced}> ::= \varepsilon$
 - $<\text{Balanced}> ::= 0<\text{OneAndMore}>$
 - $<\text{Balanced}> ::= 1<\text{ZeroAndMore}>$
 - $<\text{OneAndMore}> ::= 1<\text{Balanced}>$
 - $<\text{ZeroAndMore}> ::= 0<\text{Balanced}>$
 - Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
- Identifier = (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z) (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z ∨ 0 ∨ 1 ∨ ... ∨ 9)*
- Digit = (0 ∨ 1 ∨ ... ∨ 9)
- Number = 0 ∨ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)* ∨ ~ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)*
- Keywords: if = if, while = while,

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Lexing

- Different syntactic categories of “words”: tokens
- Example:
 - Convert sequence of characters into sequence of strings, integers, and floating point numbers.
 - "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float 3.14]

Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- To use regular expressions to parse our input we need:
 - Some way to identify the input string — call it a lexing buffer
 - Set of regular expressions,
 - Corresponding set of actions to take when they are matched.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call `ocamllex <filename>.mll`
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`

Sample Input

```ocaml
rule main = parse ['0'-'9']+ { print_string "Int\n"} ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"} ['a'-'z']+ { print_string "String\n"} _ { main lexbuf } {
  let newlexbuf = (Lexing.from_channel stdin) in
  main newlexbuf
}
```

General Input

```ocaml`
{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
  regexp { action }
| ...
| regexp { action }
and entrypoint [arg1... argn] = parse ...and ...
{ trailer }
```

Ocamllex Input

- `<filename>.ml` contains one lexing function per `entrypoint`
- Name of function is name given for `entrypoint`
- Each entry point becomes an Ocaml function that takes n+1 arguments, the extra implicit last argument being of type `Lexing.lexbuf`
- `arg1... argn` are for use in `action`

Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _: (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \(^\wedge [c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e^+\): same as \(e e^*\)
- \(e?\): option - was \(e_1 \lor \varepsilon\)

Ocamllex Regular Expression

- \(e_1 \# e_2\): the characters in \(e_1\) but not in \(e_2\); \(e_1\) and \(e_2\) must describe just sets of characters
- \(ident\): abbreviation for earlier reg exp in let ident = regexp
- \(e_1\) as \(id\): binds the result of \(e_1\) to \(id\) to be used in the associated action

Ocamllex Manual

- More details can be found at http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

Example : test.mll

```ocaml
{ type result = Int of int | Float of float | String of string }  
let digit = \['0'-'9'\]  
let digits = digit +  
let lower_case = \['a'-'z'\]  
let upper_case = \['A'-'Z'\]  
let letter = upper_case | lower_case  
let letters = letter +  
rule main = parse  
   (digits)'.'digits as f  { Float (float_of_string f) }  
| digits as n              { Int (int_of_string n) }  
| letters as s             { String s}  
| _  { main lexbuf }  
{ let newlexbuf = (Lexing.from_channel stdin) in  
print_newline ();  
main newlexbuf }  
```

Example : test.mll

```ocaml
Example
# #use "test.ml";;
...  
val main : Lexing.lexbuf -> result = <fun>  
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->  
result = <fun>  
hi there 234 5.2  
- : result = String "hi"
```

Example

What happened to the rest?!?
Example

```ml
# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"
```

Your Turn

- Work on ML5
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers

Problem

- How to get lexer to look at more than the first token at one time?
- Answer: `action` has to tell it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case

Example

```ml
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n          { Int (int_of_string n) :: main lexbuf }
| letters as s         { String s :: main lexbuf}
| eof                     { [] } 
| _                        { main lexbuf }
```

Example Results

```
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
```

```
Used Ctrl-d to send the end-of-file signal
```

Dealing with comments

First Attempt

```ml
let open_comment = "(*" 
let close_comment = ")*"
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n          { Int (int_of_string n) :: main lexbuf }
| letters as s         { String s :: main lexbuf}
| eof                     { [] } 
| _                        { main lexbuf }
```
Dealing with comments

open_comment	{ comment lexbuf}
eof	{ [] }
_	{ main lexbuf }

and comment = parse

| close_comment | { main lexbuf } |
| _ | { comment lexbuf } |

Dealing with nested comments

rule main = parse ...

open_comment	{ comment 1 lexbuf}
eof	{ [] }
_	{ main lexbuf }

and comment depth = parse

open_comment	{ comment (depth+1) lexbuf }
close_comment	{ if depth = 1 then main lexbuf }
	else comment (depth - 1) lexbuf }

| _ | { comment depth lexbuf } |

types of formal language descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata – covered in automata theory

sample grammar

Language: Parenthesized sums of 0’s and 1’s

| <Sum> ::= 0 |
| <Sum> ::= 1 |
| <Sum>::= <Sum> + <Sum> |
| <Sum> ::= (<Sum>) |
BNF Grammars

- Start with a set of characters, \(a,b,c,\ldots \)
 - We call these *terminals*
- Add a set of different characters, \(X,Y,Z,\ldots \)
 - We call these *nonterminals*
- One special nonterminal \(S \) called *start symbol*

BNF rules (aka *productions*) have form

\[
X ::= y
\]

where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: \(<Sum>\)
- Start symbol = \(<Sum>\)

\[
<Sum> ::= 0
\]

\[
<Sum> ::= 1
\]

\[
<Sum> ::= <Sum> + <Sum>
\]

\[
<Sum> ::= (<Sum>)
\]

Can be abbreviated as

\[
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
\]

BNF Derivations

- Given rules

\[
X ::= yZw \quad \text{and} \quad Z ::= v
\]

we may replace \(Z \) by \(v \) to say

\[
X \Rightarrow yZw \Rightarrow yvw
\]

- Sequence of such replacements called *derivation*
- Derivation called *right-most* if always replace the right-most non-terminal

BNF Derivations

- Start with the start symbol:

\[
<Sum> =>
\]

- Pick a non-terminal

\[
<Sum> =>
\]
BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= <Sum> + <Sum>`
- `<Sum> => <Sum> + <Sum>`

BNF Derivations

Pick a non-terminal:

- `<Sum> => <Sum> + <Sum>`
- `<Sum> => <Sum>`
- `<Sum> + <Sum>`

BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= (<Sum>)`
- `<Sum> => <Sum> + <Sum>`
- `<Sum> => (<Sum>) + <Sum>`

BNF Derivations

Pick a non-terminal:

- `<Sum> ::= (<Sum>)`
- `<Sum> => (<Sum>) + <Sum>`
- `<Sum> => (<Sum> + <Sum>) + <Sum>`

BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= (<Sum>)`
- `<Sum> => (<Sum>) + <Sum>`
- `<Sum> => (<Sum> + <Sum>) + <Sum>`

BNF Derivations

Pick a non-terminal:

- `<Sum> ::= (<Sum>)`
- `<Sum> => (<Sum>) + <Sum>`
- `<Sum> => (<Sum> + <Sum>) + <Sum>`
BNF Derivations

Pick a rule and substitute:

- \(<\text{Sum}> ::= 1 \)

 \(<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \)

BNF Derivations

Pick a non-terminal:

- \(<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + 0 \)

BNF Derivations

Pick a rule and substitute:

- \(<\text{Sum}> ::= 0 \)

 \(<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + 0 \)

BNF Derivations

(\(0 + 1 \)) + 0 \) is generated by grammar

- \(<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \)

 \(\Rightarrow (<\text{Sum}> + 1) + 0 \)

 \(\Rightarrow (0 + 1) + 0 \)
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>