

CS/ECE 374 A ✦ Spring 2026

❖ Homework 2 ❖

Due Tuesday, February 3, 2026 at 9pm Central Time

1. For each of the following languages, describe an equivalent regular expression, and **briefly explain in English** why your regular expression is correct. Unless specified otherwise, all languages are over the binary alphabet $\Sigma = \{0, 1\}$. There are infinitely many correct regular expressions for each language.

- (a) All strings that start with 0011 , end with 0011 , and whose length is a multiple of 5.
- (b) All strings that do not begin with 000 or 111 , but do end with 1010 .
- (c) All strings that have an odd number of 1 s before the first 0 , contain an even number of 0 s, and contain 101 as a substring.
- (d) All strings where every run of 0 s with odd length is immediately followed by a run of 1 s with odd length. A run is a consecutive sequence of the same alphabet, e.g., 000 is a run of 0 s with odd length, 111111 is a run of 1 s with even length, and the string 000100 has *one* run of 0 s with odd length (which is immediately followed by one run of 1 s with odd length.)
- *(e) **Practice only. Do not submit solutions.**

All strings over the alphabet $\{0, 1, 2, 3\}$ in which every pair of adjacent symbols differs by exactly 1.

[Hint: As a sanity check: Which of these languages contain the empty string? What about the strings 0 and 1 ?]

2. For each of the following languages over the binary alphabet $\Sigma = \{0, 1\}$, describe a DFA

that accepts the language, and **briefly explain in English** the purpose of each state. You can describe your DFA using a drawing, formal mathematical notation, or a product construction; see the standard DFA rubric.

- (a) All strings that start with 001100 and where the number of 1 s is divisible by 3.
- (b) All even length strings that do not start with 000 or 111 .
- (c) All strings such that ***exactly one*** of the following is true:
 - Every run of 0 s with length divisible by 374 is immediately followed by a run of 1 s with length divisible by 374.
 - The substring 01 appears a number of times divisible by 374.

[Hint: You might find product constructions and mathematical notation descriptions useful for one or all of them. In fact, don't even try to draw anything for the last one.]

3. Practice only. Do not submit solutions.

This question asks about strings over the set of *pairs* of bits, which we will write vertically. Let Σ_2 denote the set of all bit-pairs:

$$\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

We can interpret any string w of bit-pairs as a $2 \times |w|$ matrix of bits; each row of this matrix is the binary representation of some non-negative integer, possibly with leading 0s. Let $hi(w)$ and $lo(w)$ respectively denote the *numerical values* of the top and bottom row of this matrix. For example, $hi(\epsilon) = lo(\epsilon) = 0$, and if

$$w = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0011 \\ 0101 \end{bmatrix}$$

then $hi(w) = 3$ and $lo(w) = 5$.

(a) Describe a DFA that accepts the language $L_{+1} = \{w \in \Sigma_2^* \mid hi(w) = lo(w) + 1\}$.

For example, $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1100 \\ 1011 \end{bmatrix} \in L_{+1}$, because $hi(w) = 12$ and $lo(w) = 11$.

(b) Describe a regular expression for L_{+1} .

(c) Describe a DFA that accepts the language $L_{\times 3} = \{w \in \Sigma_2^* \mid hi(w) = 3 \cdot lo(w)\}$.

For example, $w = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1001 \\ 0011 \end{bmatrix} \in L_{\times 3}$, because $hi(w) = 9$ and $lo(w) = 3$.

(d) Describe a regular expression for $L_{\times 3}$.

(e) Describe a DFA that accepts the language $L_{\times 3/2} = \{w \in \Sigma_2^ \mid 2 \cdot hi(w) = 3 \cdot lo(w)\}$.

For example, $w = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1001 \\ 0110 \end{bmatrix} \in L_{\times 3/2}$, because $hi(w) = 9$ and $lo(w) = 6$.

(Don't bother with the regular expression for this one.)

Solved problem

4. **C comments** are the set of strings over alphabet $\Sigma = \{\star, /, \text{A}, \diamond, \downarrow\}$ that form a proper comment in the C program language and its descendants, like C++ and Java. Here \downarrow represents the newline character, \diamond represents any other whitespace character (like the space and tab characters), and A represents any non-whitespace character other than \star or $/$.¹ There are two types of C comments:

- Line comments: Strings of the form $// \dots \downarrow$
- Block comments: Strings of the form $/* \dots */$

Following the C99 standard, we explicitly disallow *nesting* comments of the same type. A line comment starts with $//$ and ends at the first \downarrow after the opening $//$. A block comment starts with $/*$ and ends at the the first $*/$ completely after the opening $/*$; in particular, every block comment has at least two $*$ s. For example, each of the following strings is a valid C comment:

$/* */$ $// \diamond // \diamond \downarrow$ $/* // \diamond \star \diamond \downarrow */$ $/* \diamond // \diamond \downarrow \diamond */$

On the other hand, *none* of the following strings is a valid C comment:

$/* /$ $// \diamond // \diamond \downarrow \diamond \downarrow$ $/* \diamond /* \star */ \diamond */$

(Questions about C comments start on the next page.)

¹The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening $/*$ or $//$ of a comment must not be inside a string literal ($" \dots "$) or a (multi-)character literal ($' \dots '$).
- The opening double-quote of a string literal must not be inside a character literal ($' "$) or a comment.
- The closing double-quote of a string literal must not be escaped ($\\"$)
- The opening single-quote of a character literal must not be inside a string literal ($" \dots ' \dots "$) or a comment.
- The closing single-quote of a character literal must not be escaped ($\\'$)
- A backslash escapes the next symbol if and only if it is not itself escaped ($\\\$) or inside a comment.

For example, the string $/* \\\\" */ /* /* /* */$ is a valid string literal (representing the 5-character string $/*\\"*/$, which is itself a valid block comment!) followed immediately by a valid block comment. *For this homework question, just pretend that the characters ' ', " , and \ don't exist.*

Commenting in C++ is even more complicated, thanks to the addition of *raw string literals*. Don't ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.

(a) Describe a regular expression for the set of all C comments.

Solution:

$$//(/ + * + A + \diamond)^* \downarrow + /* (/ + A + \diamond + \downarrow + **^*(A + \diamond + \downarrow))^* *^* *$$

The first subexpression matches all line comments, and the second subexpression matches all block comments. Within a block comment, we can freely use any symbol other than $*$, but any run of $*$ s must be followed by a character in $(A + \diamond + \downarrow)$ or by the closing slash of the comment. ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (\diamond), newlines (\downarrow), and C comments.

Solution:

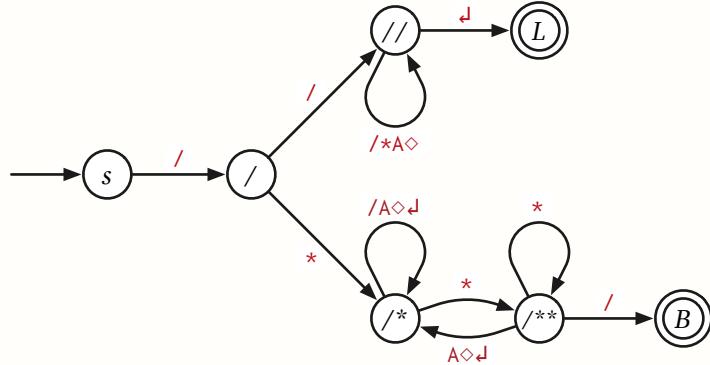
$$(\diamond + \downarrow + //(/ + * + A + \diamond)^* \downarrow + /* (/ + A + \diamond + \downarrow + **^*(A + \diamond + \downarrow))^* **^* /)^*$$

This regular expression has the form $(\langle \text{whitespace} \rangle + \langle \text{comment} \rangle)^*$, where $\langle \text{whitespace} \rangle$ is the regular expression $\diamond + \downarrow$ and $\langle \text{comment} \rangle$ is the regular expression from part (a). ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.



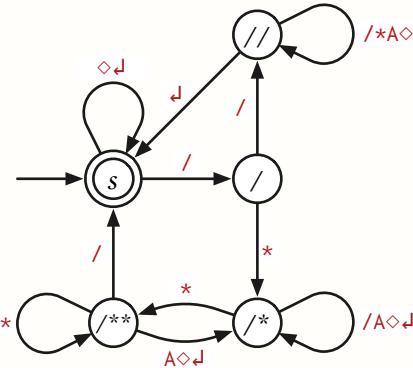
The states are labeled mnemonically as follows:

- s — We have not read anything.
- $/$ — We just read the initial $/$.
- $//$ — We are reading a line comment.
- L — We have just read a complete line comment.
- $/*$ — We are reading a block comment, and we did not just read a $*$ after the opening $/*$.
- $/*/$ — We are reading a block comment, and we just read a $*$ after the opening $/*$.
- $/**$ — We are reading a block comment, and we just read a $*$ after the opening $/*/$.
- B — We have just read a complete block comment.

Rubric: Standard DFA design rubric. This is not the only correct solution, or even the simplest correct solution. (We don't need two distinct accepting states.)

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (\diamond), newlines (\downarrow), and C comments.

Solution: By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.



The states are labeled mnemonically as follows:

- s — We are between comments.
- $/$ — We just read the initial $/$ of a comment.
- $//$ — We are reading a line comment.
- $/*$ — We are reading a block comment, and we did not just read a $*$ after the opening $/*$.
- $/**$ — We are reading a block comment, and we just read a $*$ after the opening $/*$.

■

Rubric: Standard DFA design rubric. This is not the only correct solution, but it is the simplest correct solution.

*5. Recall that the reversal w^R of a string w is defined recursively as follows:

$$w^R := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^R \bullet a & \text{if } w = a \cdot x \end{cases}$$

The reversal L^R of any *language* L is the set of reversals of all strings in L :

$$L^R := \{w^R \mid w \in L\}.$$

Prove that the reversal of every regular language is regular.

Solution: Let r be an arbitrary regular expression. We want to derive a regular expression r' such that $L(r') = L(r)^R$.

Assume for every regular expression s smaller than r that there is a regular expression s' such that $L(s') = L(s)^R$.

There are five cases to consider (mirroring the definition of regular expressions).

(a) If $r = \emptyset$, then we set $r' = \emptyset$, so that

$$\begin{aligned} L(r)^R &= L(\emptyset)^R && \text{because } r = \emptyset \\ &= \emptyset^R && \text{because } L(\emptyset) = \emptyset \\ &= \emptyset && \text{because } \emptyset^R = \emptyset \\ &= L(\emptyset) && \text{because } L(\emptyset) = \emptyset \\ &= L(r') && \text{because } r = \emptyset \end{aligned}$$

(b) If $r = w$ for some string $w \in \Sigma^*$, then we set $r' := w^R$, so that

$$\begin{aligned} L(r)^R &= L(w)^R && \text{because } r = w \\ &= \{w\}^R && \text{because } L(\langle \text{string} \rangle) = \{\langle \text{string} \rangle\} \\ &= \{w^R\} && \text{by definition of } L^R \\ &= L(w^R) && \text{because } L(\langle \text{string} \rangle) = \{\langle \text{string} \rangle\} \\ &= L(r') && \text{because } r = w^R \end{aligned}$$

(c) Suppose $r = s^*$ for some regular expression s . The inductive hypothesis implies a regular expressions s' such that $L(s') = L(s)^R$. Let $r' = (s')^*$; then we have

$$\begin{aligned} L(r)^R &= L(s^*)^R && \text{because } r = s^* \\ &= (L(s)^*)^R && \text{by definition of } * \\ &= (L(s^R))^* && \text{because } (L^R)^* = (L^*)^R \\ &= (L(s'))^* && \text{by definition of } s' \\ &= L((s')^*) && \text{by definition of } * \\ &= L(r') && \text{by definition of } r' \end{aligned}$$

(d) Suppose $r = s + t$ for some regular expressions s and t . The inductive hypothesis implies regular expressions s' and t' such that $L(s') = L(s)^R$ and $L(t') = L(t)^R$.

Set $r' := s' + t'$; then we have

$$\begin{aligned}
 L(r)^R &= L(s + t)^R && \text{because } r = s + t \\
 &= (L(s) \cup L(t))^R && \text{by definition of } + \\
 &= \{w^R \mid w \in (L(s) \cup L(t))\} && \text{by definition of } L^R \\
 &= \{w^R \mid w \in L(s) \text{ or } w \cup L(t)\} && \text{by definition of } \cup \\
 &= \{w^R \mid w \in L(s)\} \cup \{w^R \mid w \cup L(t)\} && \text{by definition of } \cup \\
 &= L(s)^R \cup L(t)^R && \text{by definition of } L^R \\
 &= L(s') \cup L(t') && \text{by definition of } s' \text{ and } t' \\
 &= L(s' + t') && \text{by definition of } + \\
 &= L(r')
 \end{aligned}$$

(e) Suppose $r = s \bullet t$ for some regular expressions s and t . The inductive hypothesis implies regular expressions s' and t' such that $L(s') = L(s)^R$ and $L(t') = L(t)^R$. Set $r' = t' \bullet s'$; then we have

$$\begin{aligned}
 L(r)^R &= L(st)^R && \text{because } r = s + t \\
 &= (L(s) \bullet L(t))^R && \text{by definition of } \bullet \\
 &= \{w^R \mid w \in (L(s) \bullet L(t))\} && \text{by definition of } L^R \\
 &= \{(x \bullet y)^R \mid x \in L(s) \text{ and } y \in L(t)\} && \text{by definition of } \bullet \\
 &= \{y^R \bullet x^R \mid x \in L(s) \text{ and } y \in L(t)\} && \text{concatenation reversal} \\
 &= \{y' \bullet x' \mid x' \in L(s)^R \text{ and } y' \in L(t)^R\} && \text{by definition of } L^R \\
 &= \{y' \bullet x' \mid x' \in L(s') \text{ and } y' \in L(t')\} && \text{by definition of } s' \text{ and } t' \\
 &= L(t') \bullet L(s') && \text{by definition of } \bullet \\
 &= L(t' \bullet s') && \text{by definition of } \bullet \\
 &= L(r')
 \end{aligned}$$

In all five cases, we have found a regular expression r' such that $L(r') = L(r)^R$. It follows that $L(r)^R$ is regular. ■

Rubric: Standard induction rubric!!