
CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

CS/ECE 374 A 6 Spring 2026
2 Homework 2 1

Due Tuesday, February 3, 2026 at 9pm Central Time

1. For each of the following languages, describe an equivalent regular expression, and briefly
explain in English why your regular expression is correct. Unless specified otherwise,
all languages are over the binary alphabet Σ = {0,1}. There are infinitely many correct
regular expressions for each language.

(a) All strings that start with 0011, end with 0011, and whose length is a multiple of 5.

(b) All strings that do not begin with 000 or 111, but do end with 1010.

(c) All strings that have an odd number of 1s before the first 0, contain an even number
of 0s, and contain 101 as a substring.

(d) All strings where every run of 0s with odd length is immediately followed by a run of
1s with odd length. A run is a consecutive sequence of the same alphabet, e.g., 000 is
a run of 0s with odd length, 111111 is a run of 1s with even length, and the string
000100 has one run of 0s with odd length (which is immediately followed by one run
of 1s with odd length.)

⋆(e) Practice only. Do not submit solutions.
All strings over the alphabet {0,1,2,3} in which every pair of adjacent symbols differs
by exactly 1.

[Hint: As a sanity check: Which of these languages contain the empty string? What about
the strings 0 and 1?]

2. For each of the following languages over the binary alphabet Σ = {0,1}, describe a DFA
that accepts the language, and briefly explain in English the purpose of each state. You
can describe your DFA using a drawing, formal mathematical notation, or a product
construction; see the standard DFA rubric.

(a) All strings that start with 001100 and where the number of 1s is divisible by 3.

(b) All even length strings that do not start with 000 or 111.

(c) All strings such that exactly one of the following is true:
• Every run of 0s with length divisible by 374 is immediately followed by a run of

1s with length divisible by 374.

• The substring 01 appears a number of times divisible by 374.

[Hint: You might find product constructions and mathematical notation descriptions
useful for one or all of them. In fact, don’t even try to draw anything for the last one.]

1

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

3. Practice only. Do not submit solutions.

This question asks about strings over the set of pairs of bits, which we will write vertically.
Let Σ2 denote the set of all bit-pairs:

Σ2 =
��

0
0

�

,
�

0
1

�

,
�

1
0

�

,
�

1
1

�	

We can interpret any string w of bit-pairs as a 2×|w| matrix of bits; each row of this matrix
is the binary representation of some non-negative integer, possibly with leading 0s. Let
hi(w) and lo(w) respectively denote the numerical values of the top and bottom row of this
matrix. For example, hi(ϵ) = lo(ϵ) = 0, and if

w=
�

0
0

��

0
1

��

1
0

��

1
1

�

=
�

0011
0101

�

then hi(w) = 3 and lo(w) = 5.

(a) Describe a DFA that accepts the language L+1 = {w ∈ Σ∗2 | hi(w) = lo(w) + 1}.
For example, w=

�

1
1

��

1
0

��

0
1

��

0
1

�

=
�

1100
1011

�

∈ L+1, because hi(w) = 12 and lo(w) = 11.

(b) Describe a regular expression for L+1.

(c) Describe a DFA that accepts the language L×3 = {w ∈ Σ∗2 | hi(w) = 3 · lo(w)}.
For example, w=

�

1
0

��

0
0

��

0
1

��

1
1

�

=
�

1001
0011

�

∈ L3, because hi(w) = 9 and lo(w) = 3.

(d) Describe a regular expression for L×3.

⋆(e) Describe a DFA that accepts the language L×3/2 = {w ∈ Σ∗2 | 2 · hi(w) = 3 · lo(w)}.
For example, w=

�

1
0

��

0
0

��

0
1

��

1
1

�

=
�

1001
0110

�

∈ L×3/2, because hi(w) = 9 and lo(w) = 6.

(Don’t bother with the regular expression for this one.)

2

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

Solved problem

4. C comments are the set of strings over alphabet Σ = {*,/,A,⋄, ↱} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here ↱

represents the newline character, ⋄ represents any other whitespace character (like the
space and tab characters), and A represents any non-whitespace character other than * or /.1
There are two types of C comments:

• Line comments: Strings of the form // · · · ↱

• Block comments: Strings of the form /* · · ·*/

Following the C99 standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first ↱after the opening //. A block comment
starts with /* and ends at the the first */ completely after the opening /*; in particular,
every block comment has at least two *s. For example, each of the following strings is a
valid C comment:

/***/ //⋄//⋄ ↱ /*///⋄*⋄ ↱**/ /*⋄//⋄ ↱⋄*/

On the other hand, none of the following strings is a valid C comment:

/*/ //⋄//⋄ ↱⋄ ↱ /*⋄/*⋄*/⋄*/

(Questions about C comments start on the next page.)

1The actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

• The opening /* or // of a comment must not be inside a string literal (" · · ·") or a (multi-)character literal
(' · · ·').

• The opening double-quote of a string literal must not be inside a character literal ('"') or a comment.
• The closing double-quote of a string literal must not be escaped (\")
• The opening single-quote of a character literal must not be inside a string literal (" · · ·' · · ·") or a comment.
• The closing single-quote of a character literal must not be escaped (\’)
• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string "/*\\\"*/"/*"/*\"/*"*/ is a valid string literal (representing the 5-character string /*\"*/,
which is itself a valid block comment!) followed immediately by a valid block comment. For this homework question,
just pretend that the characters ', ", and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few

other languages, like OCaml, explicitly allow nesting block comments.

3

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

(a) Describe a regular expression for the set of all C comments.

Solution:

//(/+ *+ A+ ⋄)∗ ↱ + /*
�

/+ A+ ⋄+ ↱+ **∗(A+ ⋄+ ↱)
�∗

∗/

The first subexpression matches all line comments, and the second subexpression
matches all block comments. Within a block comment, we can freely use any
symbol other than *, but any run of *s must be followed by a character in
(A+ ⋄+ ↱) or by the closing slash of the comment. ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (⋄),
newlines (↱), and C comments.

Solution:
�

⋄+ ↱+ //(/+ *+ A+ ⋄)∗ ↱+ /* (/+ A+ ⋄+ ↱+ **∗(A+ ⋄+ ↱))∗ **∗/
�∗

This regular expression has the form (〈whitespace〉 + 〈comment〉)∗, where
〈whitespace〉 is the regular expression ⋄ + ↱and 〈comment〉 is the regular
expression from part (a). ■

Rubric: Standard regular expression rubric. This is not the only correct solution.

4

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments.
All missing transitions lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:

• s — We have not read anything.
• / — We just read the initial /.
• // — We are reading a line comment.
• L — We have just read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
• B — We have just read a complete block comment.

■

Rubric: Standard DFA design rubric. This is not the only correct solution, or even the simplest
correct solution. (We don’t need two distinct accepting states.)

5

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (⋄),
newlines (↱), and C comments.

Solution: By merging the accepting states of the previous DFA with the start
state and adding white-space transitions at the start state, we obtain the following
six-state DFA. Again, all missing transitions lead to a hidden reject state.

/*A◇

*

/

/
↲

*

/

A◇↲

◇↲

/A◇↲*

s /

//

/*/**

The states are labeled mnemonically as follows:

• s — We are between comments.
• / — We just read the initial / of a comment.
• // — We are reading a line comment.
• /* — We are reading a block comment, and we did not just read a * after

the opening /*.
• /** — We are reading a block comment, and we just read a * after the

opening /*.
■

Rubric: Standard DFA design rubric. This is not the only correct solution, but it is the simplest
correct solution.

6

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

⋆5. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= a · x

The reversal LR of any language L is the set of reversals of all strings in L:

LR :=
�

wR
�

� w ∈ L
	

.

Prove that the reversal of every regular language is regular.

Solution: Let r be an arbitrary regular expression. We want to derive a regular
expression r ′ such that L(r ′) = L(r)R.

Assume for every regular expression s smaller than r that there is a regular
expression s′ such that L(s′) = L(s)R.

There are five cases to consider (mirroring the definition of regular expressions).

(a) If r =∅, then we set r ′ =∅, so that

L(r)R = L(∅)R because r =∅
=∅R because L(∅) =∅
=∅ because ∅R =∅
= L(∅) because L(∅) =∅
= L(r ′) because r =∅

(b) If r = w for some string w ∈ Σ∗, then we set r ′ := wR, so that

L(r)R = L(w)R because r = w

= {w}R because L(〈string〉) = {〈string〉}
= {wR} by definition of LR

= L(wR) because L(〈string〉) = {〈string〉}
= L(r ′) because r = wR

(c) Suppose r = s∗ for some regular expression s. The inductive hypothesis implies
a regular expressions s′ such that L(s′) = L(s)R. Let r ′ = (s ′)∗; then we have

L(r)R = L(s∗)R because r = s∗

= (L(s)∗)R by definition of ∗

= (L(s)R)∗ because (LR)∗ = (L∗)R

= (L(s′))∗ by definition of s′

= L((s′)∗) by definition of ∗

= L(r ′) by definition of r ′

(d) Suppose r = s+ t for some regular expressions s and t. The inductive hypothesis
implies regular expressions s′ and t ′ such that L(s′) = L(s)R and L(t ′) = L(t)R.

7

CS/ECE 374 A Homework 2 (due Feb 3) Spring 2026

Set r ′ := s ′ + t ′; then we have

L(r)R = L(s+ t)R because r = s+ t

= (L(s)∪ L(t))R by definition of +
= {wR | w ∈ (L(s)∪ L(t))} by definition of LR

= {wR | w ∈ L(s) or w∪ L(t)} by definition of ∪
= {wR | w ∈ L(s)} ∪ {wR | w∪ L(t)} by definition of ∪
= L(s)R ∪ L(t)R by definition of LR

= L(s′)∪ L(t ′) by definition of s′ and t ′

= L(s′ + t ′) by definition of +
= L(r ′) by definition of r ′

(e) Suppose r = s• t for some regular expressions s and t. The inductive hypothesis
implies regular expressions s′ and t ′ such that L(s′) = L(s)R and L(t ′) = L(t)R.
Set r ′ = t ′ • s ′; then we have

L(r)R = L(st)R because r = s+ t

= (L(s) • L(t))R by definition of •
= {wR | w ∈ (L(s) • L(t))} by definition of LR

= {(x • y)R | x ∈ L(s) and y ∈ L(t)} by definition of •
= {yR • xR | x ∈ L(s) and y ∈ L(t)} concatenation reversal
= {y ′ • x ′ | x ′ ∈ L(s)R and y ′ ∈ L(t)R} by definition of LR

= {y ′ • x ′ | x ′ ∈ L(s′) and y ′ ∈ L(t ′)} by definition of s′ and t ′

= L(t ′) • L(s′) by definition of •
= L(t ′ • s′) by definition of •
= L(r ′) by definition of r ′

In all five cases, we have found a regular expression r ′ such that L(r ′) = L(r)R. It
follows that L(r)R is regular. ■

Rubric: Standard induction rubric!!

8

