CS/ECE 374 A: Algorithms & Models of Computation

Even More NP Completeness

Lecture 26 May 1, 2025

Part I

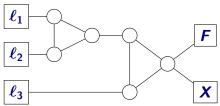
Wrap Up 3-Coloring

Last Time: 3COLOR

Recall: last time, wanted to prove that 3COLOR is NP-complete. Need a function f such that $\varphi \in 3SAT$ iff $f(\varphi) \in 3COLOR$.

Let $f(\varphi) = G$, where:

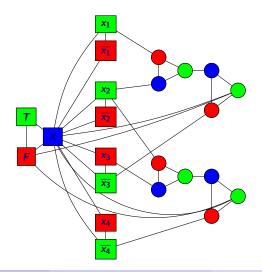
- We add vertices **T**, **F**, and **X** to **G**, all connected.
- For each variable x_i in φ , we add vertices x_i and $\overline{x_i}$, connected to each other and to X.
- For each clause $C = (\ell_1 \lor \ell_2 \lor \ell_3)$, we add the following "gadget" to G: (Note: square vertices already exist in G.)



3

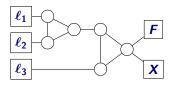
3SAT to 3COLOR: Picture

Say
$$\varphi = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4})$$



3SAT to 3COLOR: Only-If

Let $f(\varphi) = G$, where for each clause $C = (\ell_1 \vee \ell_2 \vee \ell_3)$, we include:

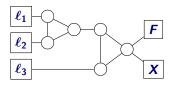


Claim: if φ is satisfiable, G is 3-colorable.

5

3SAT to 3COLOR: If

Let $f(\varphi) = G$, where for each clause $C = (\ell_1 \vee \ell_2 \vee \ell_3)$, we include:



Claim: if \boldsymbol{G} is 3-colorable, φ is satisfiable.

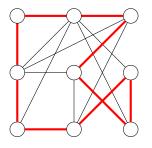
6

Part II

Hamiltonian Cycle

Hamiltonian Cycle

A *Hamiltonian cycle* is a cycle that visits every vertex.



Key question: does **G** have a Hamiltonian cycle?

For ease of reduction, we will focus on the case where G is directed.

DIRHAM

Claim

DIRHAM = $\{G \mid G \text{ has a directed Ham cycle}\}\$ is **NP**-complete.

DIRHAM is in **NP**: **w** is the description of a Hamiltonian cycle.

What problem should we reduce to **DIRHAM** in order to prove hardness?

3SAT to DIRHAM: Intuition

We have a **3SAT** formula φ . We want to construct a (directed) graph G such that φ is satisfiable iff G has a Hamiltonian cycle.

Step 1: construct G such that each Hamiltonian cycle corresponds to *some* assignment to the variables of φ .

Step 2: ensure that every clause is satisfied.

3SAT to DIRHAM: Reduction

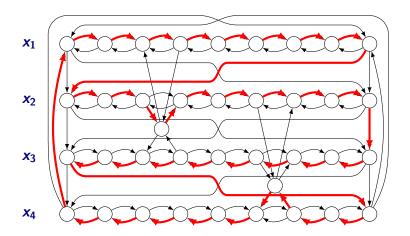
Let $f(\varphi) = G$, where:

- If φ has n variables and k clauses, G has vertices (i,j) for $1 \le i \le n$ and $1 \le j \le 3k + 3$.
- We add edges $(i,j) \rightarrow (i,j+1)$ and $(i,j) \rightarrow (i,j-1)$.
- We add edges (i,1) o (i+1,1), (i,1) o (i+1,3k+3), (i,3k+3) o (i+1,1), and (i,3k+3) o (i+1,3k+3). (We treat n+1 as 1 for this step.)
- For each clause C_i , we add a vertex.
- If x_i appears in C_j , we add edges $(i, 3j) \rightarrow C_j$ and $C_j \rightarrow (i, 3j + 1)$. If $\overline{x_i}$ appears in C_j , we add edges $(i, 3j + 1) \rightarrow C_j$ and $C_j \rightarrow (i, 3j)$.

This reduction clearly runs in polynomial time. (In fact, quadratic.) Just need to show that $\varphi \in \mathbf{3SAT}$ iff $\mathbf{G} \in \mathbf{DIRHAM}$.

3SAT to DIRHAM: Picture

Say
$$\varphi = (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4})$$



3SAT to DIRHAM: Only-If

Let $f(\varphi) = G$, where:

- For each variable x_i we have a bidirectional path of 3k + 3 vertices (i, j).
- Path end points for x_i can go to path end points for x_{i+1} (wrapping n to 1).
- For each clause C_j , we add edges $(i,3j) \to C_j$ and $C_j \to (i,3j+1)$ if x_i is in C_j , or $(i,3j+1) \to C_j$ and $C_j \to (i,3j)$ if $\overline{x_i}$ is in C_j .

Claim: if φ is satisfiable, G has a Hamiltonian cycle.

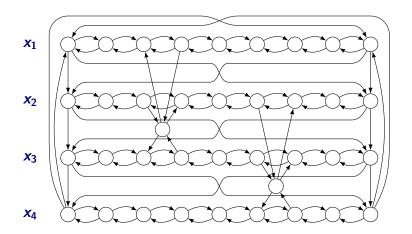
3SAT to DIRHAM: If

Let $f(\varphi) = G$, where:

- For each variable x_i we have a bidirectional path of 3k + 3 vertices (i, j).
- Path end points for x_i can go to path end points for x_{i+1} (wrapping n to 1).
- For each clause C_j , we add edges $(i,3j) \to C_j$ and $C_j \to (i,3j+1)$ if x_i is in C_j , or $(i,3j+1) \to C_j$ and $C_j \to (i,3j)$ if $\overline{x_i}$ is in C_j .

Claim: if G has a Hamiltonian cycle, φ is satisfiable.

3SAT to DIRHAM: If Visualization



Related Problems

This shows that (assuming $P \neq NP$), there is no polynomial-time algorithm to find a Hamiltonian cycle in a *directed* graph.

- Exercise: reduce finding a Hamiltonian cycle in a directed graph to finding a Hamiltonian cycle in an undirected graph.
- From PrairieLearn: Hamiltonian path is also NP-hard.

Claim

Finding the single-source shortest (simple) paths in a graph with no constraints on the edge weights is **NP**-hard.

Part III

Subset Sum

Subset Sum

Subset Sum problem: given a set S of n positive integers, is there a subset of S that adds up to some target integer T?

Say S = [1, 3, 7, 12, 374]. Can we make:

- T = 11?
- T = 17?
- T = 397?
- T = 398?

SUBSUM

Claim

 $SUBSUM = \{S, T \mid a \text{ subset of } S \text{ sums to } T\} \text{ is } NP\text{-complete.}$

SUBSUM is in **NP**: **w** describes a subset of **S** that sums to **T**.

What problem should we reduce to **SUBSUM** in order to prove hardness?

VC to SUBSUM: Intuition

We have a graph G and a number k. We want to construct a set S and target T such that G has a vertex cover of size k iff S has a subset that sums to T.

Key idea: make an integer per vertex, representing edges "covered".

VC to SUBSUM: Reduction

Let f(G, k) = (S, T) where:

- ullet We number the edges of $oldsymbol{G}$ arbitrarily from $oldsymbol{0}$ to $oldsymbol{E}-oldsymbol{1}$
- For each vertex v, we include $a_v = 4^E + \sum_{i \in \Delta(v)} 4^i$ in S. $(\Delta(v))$ is the set of edges with v as one endpoint.)
- For each edge i, we include $b_i = 4^i$ in S.
- We set $T = k \cdot 4^{E} + \sum_{i=0}^{E-1} 2 \cdot 4^{i}$.

This reduction clearly* runs in polynomial time. (In fact, linear.) Just need to show that $(G, k) \in VC$ iff $(S, T) \in SUBSUM$.

Aside: Representing Integers

Our reduction uses integers that are exponentially large—how can it run in polynomial time?

To represent an integer x, we only need $log_2(x)$ bits!

• In our reduction, T is at most $(k+1) \cdot 4^E$, and so takes at most $\log_2(k+1) + 2E$ bits.

The "size" of (S, T) is $|S| + \log T$, so showing **SUBSUM** is **NP**-complete just means that no algorithm can solve it in time polynomial in |S| and $\log T$. (We call such problems "weakly **NP**-hard".)

• There is a dynamic programming algorithm that runs in time O(nT), so our reduction did in fact *need* to use large integers.

VC to SUBSUM: Only-If

Let f(G, k) = (S, T), where:

- For each vertex \mathbf{v} , we add $a_{\mathbf{v}} = \mathbf{4}^{E} + \sum_{i \in \Delta(\mathbf{v})} \mathbf{4}^{i}$ to \mathbf{S} .
- For each edge i, we add $b_i = 4^i$ to S.
- We set $T = k \cdot 4^{E} + \sum_{i=0}^{E-1} 2 \cdot 4^{i}$.

Claim: if G has a vertex cover of size k, S has a subset sum to T.

VC to SUBSUM: If

Let f(G, k) = (S, T), where:

- For each vertex \mathbf{v} , we add $a_{\mathbf{v}} = \mathbf{4}^{E} + \sum_{i \in \Delta(\mathbf{v})} \mathbf{4}^{i}$ to \mathbf{S} .
- For each edge i, we add $b_i = 4^i$ to S.
- We set $T = k \cdot 4^E + \sum_{i=0}^{E-1} 2 \cdot 4^i$.

Claim: if S has a subset sum to T, G has a vertex cover of size k.

Takeaway Points

Known **NP**-complete languages

- SAT (from Cook-Levin)
- CNF-SAT (from Cook-Levin)
- 3SAT (from CNF-SAT)
- Independent Set (from 3SAT)
- Clique (from Independent Set)
- Vertex Cover (from Independent Set)
- 3-coloring (from 3SAT)
- Hamiltonian path / cycle (directed or undirected) (from 3SAT)
- Subset Sum (from Vertex Cover)
- And many others we don't have time for! (See Jeff's book.)