CS/ECE 374 A: Algorithms & Models of Computation

More NP Completeness

Lecture 25 April 29, 2025

Part I

Wrap Up 3SAT

Last Time: 3SAT

Recall: last time, we wanted to prove that 3SAT is NP-complete. Need a function f such that if $\varphi \in CNF$ -SAT iff $f(\varphi) \in 3SAT$.

 ${\it f}$ converts each clause in ${\it \varphi}$ into multiple size-three clauses:

- If $C = (\ell_1)$, include clauses $(\ell_1 \lor x_{C1} \lor x_{C2})$, $(\ell_1 \lor \overline{x_{C1}} \lor x_{C2})$, $(\ell_1 \lor x_{C1} \lor \overline{x_{C2}})$, and $(\ell_1 \lor \overline{x_{C1}} \lor \overline{x_{C2}})$.
- If $C = (\ell_1 \vee \ell_2)$, include clauses $(\ell_1 \vee \ell_2 \vee x_C)$ and $(\ell_1 \vee \ell_2 \vee \overline{x_C})$.
- If $C = (\ell_1 \vee \ell_2 \vee \ell_3)$, include C.
- If $C = (\ell_1 \vee \ldots \vee \ell_k)$ (for $k \geq 4$), include clauses $(\ell_1 \vee \ell_2 \vee x_{C1})$, $(\overline{x_{C1}} \vee \ell_3 \vee x_{C2})$, ..., $(\overline{x_{C(k-3)}} \vee \ell_{k-1} \vee \ell_k)$.

Need to show: φ is satisfiable iff $f(\varphi)$ is!

3

CNF-SAT to 3SAT: If

$$\varphi \to f(\varphi):$$

$$(\ell_{1}) \to (\ell_{1} \lor x_{C1} \lor x_{C2}) \land (\ell_{1} \lor \overline{x_{C1}} \lor x_{C2}) \land (\ell_{1} \lor x_{C1} \lor \overline{x_{C2}}) \land (\ell_{1} \lor \overline{x_{C1}} \lor \overline{x_{C2}})$$

$$(\ell_{1} \lor \ell_{2}) \to (\ell_{1} \lor \ell_{2} \lor x_{C}) \land (\ell_{1} \lor \ell_{2} \lor \overline{x_{C}})$$

$$(\ell_{1} \lor \ell_{2} \lor \ell_{3}) \to (\ell_{1} \lor \ell_{2} \lor \ell_{3})$$

$$(\ell_{1} \lor \ldots \lor \ell_{k}) \to (\ell_{1} \lor \ell_{2} \lor x_{C1}) \land (\overline{x_{C1}} \lor \ell_{3} \lor x_{C2}) \land \ldots \land (\overline{x_{C(k-3)}} \lor \ell_{k-1} \lor \ell_{k})$$

Claim: If $f(\varphi)$ is satisfiable, so is φ .

CNF-SAT to 3SAT: Only-If

$$\varphi \to f(\varphi):$$

$$(\ell_{1}) \to (\ell_{1} \lor x_{C1} \lor x_{C2}) \land (\ell_{1} \lor \overline{x_{C1}} \lor x_{C2}) \land (\ell_{1} \lor x_{C1} \lor \overline{x_{C2}}) \land (\ell_{1} \lor \overline{x_{C1}} \lor \overline{x_{C2}})$$

$$(\ell_{1} \lor \ell_{2}) \to (\ell_{1} \lor \ell_{2} \lor x_{C}) \land (\ell_{1} \lor \ell_{2} \lor \overline{x_{C}})$$

$$(\ell_{1} \lor \ell_{2} \lor \ell_{3}) \to (\ell_{1} \lor \ell_{2} \lor \ell_{3})$$

$$(\ell_{1} \lor \ldots \lor \ell_{k}) \to (\ell_{1} \lor \ell_{2} \lor x_{C1}) \land (\overline{x_{C1}} \lor \ell_{3} \lor x_{C2}) \land \ldots \land (\overline{x_{C(k-3)}} \lor \ell_{k-1} \lor \ell_{k})$$

Claim: If φ is satisfiable, so is $f(\varphi)$.

5

Part II

Independent Set

Independent Set

Recall: An independent set is $S \subseteq V$ such that no vertices in S have an edge between them. Let $IS = \{(G, k) \mid G \text{ has an IS of size } k\}$.

Claim

IS is **NP**-complete.

IS is in **NP**: **w** is the description of an IS of size **k**.

What problem should we reduce to *IS* in order to prove hardness?

3SAT to IS: Intuition

We have a 3SAT formula φ . We want to construct (G, k) such that φ is satisfiable iff G has an IS of size k.

Key observation: φ is satisfiable iff we can pick one literal from each clause to be true.

(We don't need to pick every true literal—just don't pick two that contradict!)

$$\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_4)$$

8

3SAT to IS: Reduction

Let $f(\varphi) = (G, k)$ where:

- For each clause C in φ , we add three connected vertices to G, labeled with the literals of C.
- For each variable x_i in φ , add edges between each vertex labeled x_i and each labeled $\overline{x_i}$.
- We set k as the number of clauses in φ .

This reduction clearly runs in polynomial time. (In fact, quadratic.) Just need to show $\varphi \in 3SAT$ iff $f(\varphi) \in IS$.

3SAT to IS: Only-If

Let $f(\varphi) = (G, k)$ where:

- For each clause ${\pmb C}$ in ${\pmb \varphi}$, we add three connected vertices to ${\pmb G}$, labeled with the literals of ${\pmb C}$.
- For each variable x_i in φ , add edges between each vertex labeled x_i and each labeled $\overline{x_i}$.
- We set k as the number of clauses in φ .

Claim: If φ is satisfiable, G has an IS of size k.

3SAT to IS: If

Let $f(\varphi) = (G, k)$ where:

- For each clause C in φ , we add three connected vertices to G, labeled with the literals of C.
- For each variable x_i in φ , add edges between each vertex labeled x_i and each labeled $\overline{x_i}$.
- We set k as the number of clauses in φ .

Claim: If **G** has an IS of size k, φ is satisfiable.

Related problems

Recall: Independent Set and Clique reduce to each other.

(G has an IS of size k iff \overline{G} has a clique of size k.)

Claim

CLIQUE = $\{(G, k) \mid G \text{ has a clique of size } k\}$ is **NP**-complete.

A **vertex cover** is $S \subseteq V$ such that every edge in G has at least one endpoint in S.

Observation: \boldsymbol{S} is a vertex cover iff $\boldsymbol{V}-\boldsymbol{S}$ is an independent set.

Claim

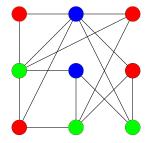
 $VC = \{(G, k) \mid G \text{ has a vertex cover of size } k\}$ is NP-complete.

Part III

3-Coloring

Graph Coloring

For a graph G, a valid coloring is an assignment of "colors" to each vertex such that no edge has the same color on both ends.



Key question: given a graph G, what is the fewest colors we can use? (This is referred to as the "chromatic number" of G)

Our focus: Can **G** be 3-colored?

3COLOR

Claim

 $3COLOR = \{G \mid G \text{ has a valid } 3\text{-coloring}\}\$ is NP-complete.

3COLOR is in **NP**: **w** is the description of a valid **3**-coloring.

What problem should we reduce to **3COLOR** in order to prove hardness?

3SAT to 3COLOR: Intuition

We have a **3**SAT formula φ . We want to construct a graph G such that φ is satisfiable iff G is **3**-colorable.

Step 1: associate "colors" with True / False values.

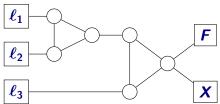
Step 2: ensure each variable is assigned to True or to False.

Step 3: ensure each clause is satisfied.

3SAT to 3COLOR: Reduction

Let $f(\varphi) = G$, where:

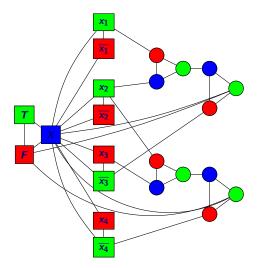
- We add vertices T, F, and X to G, all connected.
- For each variable x_i in φ , we add vertices x_i and $\overline{x_i}$, connected to each other and to X.
- For each clause $C = (\ell_1 \lor \ell_2 \lor \ell_3)$, we add the following "gadget" to G: (Note: square vertices already exist in G.)



This reduction clearly runs in polynomial time. (In fact, linear.) Just need to show $\varphi \in 3SAT$ iff $G \in 3COLOR$.

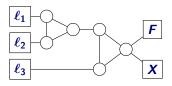
3SAT to 3COLOR: Picture

Say
$$\varphi = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4})$$



3SAT to 3COLOR: Only-If

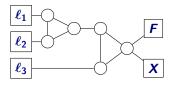
Let $f(\varphi) = G$, where for each clause $C = (\ell_1 \vee \ell_2 \vee \ell_3)$, we include:



Claim: if φ is satisfiable, G is 3-colorable.

3SAT to 3COLOR: If

Let $f(\varphi) = G$, where for each clause $C = (\ell_1 \vee \ell_2 \vee \ell_3)$, we include:



Claim: if \boldsymbol{G} is 3-colorable, φ is satisfiable.

Takeaway Points

Known **NP**-complete languages

- SAT (from Cook-Levin)
- CNF-SAT (from Cook-Levin)
- 3SAT (from CNF-SAT)
- Independent Set (from 3SAT)
- Clique (from Independent Set)
- Vertex Cover (from Independent Set)
- 3-coloring (from 3SAT)