CS/ECE 374 A: Algorithms & Models of Computation

NP and NP Completeness

Lecture 24 April 24, 2025

Part I

Efficient Computation: P and NP

What is Efficiency?

Last lecture, we discussed what problems can't have *any* algorithm—what changes if we care about *efficient* algorithms?

Definition

We say that a language L is in P if there exists an algorithm M that decides L, where for some constant c, M(x) runs in time $O(|x|^c)$.

```
(Informally: P is the set of languages with polynomial-time algorithms.)
```

Why do we allow for any polynomial run time?

- Makes it simpler to describe algorithms.
- Polynomials have helpful closure properties: if p(n) and q(n) are polynomials, so are p(n) + q(n), $p(n) \cdot q(n)$, and p(q(n)).
- We are interested in finding problems that *can't* be solved efficiently, so having a lax definition is more meaningful!

NP: Efficient Verification

Definition

We say that a language L is in NP if there is a polynomial $p(\cdot)$ and a machine M (running in time $O(|x|^c)$) such that:

- For every $x \in L$, there is a $w \in \{0,1\}^{p(|x|)}$ such that M(x,w) accepts.
- For every $x \not\in L$ and every $w \in \{0,1\}^{p(|x|)}$, M(x,w) rejects.

Intuitively, L is in NP if it is easy to verify a proof that $x \in L$.

Examples we've already seen:

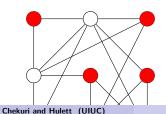
- Independent Set: w describes an IS of size k.
- Clique: w describes a clique of size k.

Why NP?

NP captures "most" problems we run into in the wild.

(Notable exception: the halting problem is not in NP!)

We think that not all problems in **NP** can be solved efficiently: verifying answers seems easier than coming up with them!



_		_	_	_	_		_	_
8		6				5		
	9						1	
			6					
			2		7	6	8	
7				4				
							5	9
	7				6			
	3			1			2	5
2			8		9	3		
6	1	6	a	2	1	5	7	2

P Versus NP

By definition, we have that $P \subseteq NP$.

Major open question: does P = NP?

- "Most" computer scientists conjecture no, but so far we can only prove that certain proof techniques aren't enough to show this!
- For 374, we will assume P ≠ NP unless otherwise stated, so some problem in NP cannot be solved efficiently.

Can we come up with a *specific* language that isn't in **P**?

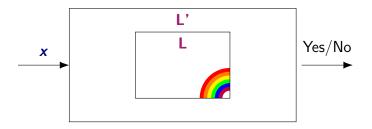
Idea: if we can reduce *every* language in NP to some specific language L, then we know L in particular is not in P!

6

NP-Hard Languages

Definition

We say that L is NP-Hard if for every $L' \in NP$, there is a polynomial-time reduction from L' to L.



Requirement: as long as "magic box" for L runs in polynomial time, so does the "box" we build for L'.

NP-Hard Example

Claim

```
\mathbf{L}_{HNI} = \{ \langle \mathbf{M} \rangle \mid \mathbf{M} \text{ halts given no input} \} \text{ is } \mathbf{NP}\text{-Hard.}
```

Let L be a language in NP, with M as the machine that verifies solutions and $p(\cdot)$ the polynomial such that $w \in \{0,1\}^{p(|x|)}$.

```
from magic import TestHNI  \begin{array}{l} \textbf{DecideL}(x) \colon \\ \textbf{Construct a program (machine) } P() \text{ that:} \\ \textbf{For each } w \in \{0,1\}^{p(|x|)}, \text{ runs } M(x,w) \\ \textbf{If any iteration accepts, halt; else infinite loop return TestHNI}(\langle P \rangle) \\ \end{array}
```

Better question: is there an **NP**-hard problem that is also in **NP**? (We call such problems **NP**-complete.)

Part II

SAT

9

Boolean Satisfiablility (SAT)

Consider a boolean formula using AND, OR, and NOT:

$$((a \lor b \lor \overline{c}) \land \overline{(b \lor c)}) \lor d$$

Is there an assignment of True/False to \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} , and \boldsymbol{d} such that this formula evaluates to True?

What about $a \wedge (\overline{a} \vee b) \wedge (\overline{a} \vee \overline{b})$?

Definition

Let
$$SAT = \{ \varphi \mid \varphi \text{ is satisfiable} \}$$

Note $SAT \in NP$: we can take w to be an assignment of True/False to each variable!

Using SAT

SAT turns out to be very powerful for modeling other problems!

Example: does G = (V, E) have a path that visits every vertex?

The Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is **NP**-complete.

Turns out all the formulas Cook-Levin constructs are all in "Conjunctive Normal Form":

- Formula is the AND of many clauses.
- Each clause is the OR of many variables/negations of variables.
- Example: $(a \lor \overline{b} \lor c) \land (b \lor d) \land (\overline{a} \lor b \lor c \lor \overline{d})$

Theorem (Cook-Levin, stronger version)

 $\mathit{CNF}\text{-}\mathit{SAT} = \{\varphi \mid \varphi \text{ is satisfiable and in CNF}\}\$ is $\mathit{NP}\text{-}\mathit{complete}.$

This means that (assuming $P \neq NP$) there is no polynomial time algorithm for SAT nor CNF-SAT!

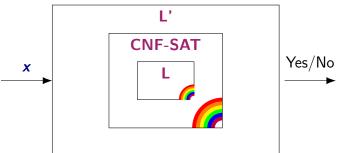
Part III

3SAT

Using Reductions

How do we prove that more problems are **NP**-complete? (Without redoing Cook-Levin...)

Idea: If **CNF-SAT** reduces to **L** in polynomial time, then **L** is **NP**-hard! (So **NP**-complete as long as $L \in NP$)



CNF-SAT to 3SAT I

A boolean formula is 3CNF if it is CNF and each clause has three literals. Let **3SAT** be the language of satisfiable 3CNF formulas.

Claim

3SAT is **NP**-complete.

3SAT is in **NP**: **w** is a satisfying assignment to the variables.

Given a CNF formula, want to make each clause have 3 literals.

- How do we fix clauses with too few? $(eg (a \lor \overline{b}))$
- How do we fix clauses with too many? $(eg(a \lor \overline{b} \lor c \lor \overline{d}))$

CNF-SAT to 3SAT II

Claim

3SAT is **NP**-complete.

Given a CNF formula φ , create $f(\varphi)$ by for every $C \in \varphi$:

- If $C = (\ell_1)$ has one literal, include clauses $(\ell_1 \vee x_C \vee y_C)$, $(\ell_1 \vee \overline{x_C} \vee y_C)$, $(\ell_1 \vee x_C \vee \overline{y_C})$, and $(\ell_1 \vee \overline{x_C} \vee \overline{y_C})$ in $f(\varphi)$, where x_C and y_C are new variables.
- If $C = (\ell_1 \vee \ell_2)$ has two literals, include clauses $(\ell_1 \vee \ell_2 \vee x_C)$ and $(\ell_1 \vee \ell_2 \vee \overline{x_C})$ in $f(\varphi)$, where x_C is a new variable.
- If C has three literals, include C in $f(\varphi)$
- If $C = (\ell_1 \vee \ldots \vee \ell_k)$ has $k \geq 4$ literals, include clauses $(\ell_1 \vee \ell_2 \vee x_{C1})$, $(\overline{x_{C1}} \vee \ell_3 \vee x_{C2})$, ..., $(\overline{x_{C(k-3)}} \vee \ell_{k-1} \vee \ell_k)$ in $f(\varphi)$, where $(x_{C1}, \ldots, x_{C(k-3)})$ are new variables.

CNF-SAT to 3SAT III

Claim

3SAT is **NP**-complete.

Our construction of f clearly runs in polynomial time. (In fact, quadratic.)

Exercise: formally prove that φ is satisfiable if and only if $f(\varphi)$ is.

- If direction: given a satisfiable assignment for $f(\varphi)$, find a satisfiable assignment for φ
- Only if direction: given a satisfiable assignment for φ , find a satisfiable assignment for $f(\varphi)$

Takeaway Points

Definitions of **P** and **NP**.

- If $L \in P$, we can efficiently decide if $x \in L$.
- If $L \in NP$, we can efficiently verify proofs that $x \in L$.
- We will assume that $P \neq NP$.

NP-hardness and **NP**-completeness

- A problem is NP-hard if every problem in NP reduces to it. If it is also in NP itself, we call it NP-complete.
- If you can reduce an NP-hard problem to L in polynomial time,
 L is also NP-hard.

Known **NP**-complete languages

- SAT
- CNF-SAT
- 3*SAT*