Solutions for Discussion 07a: Feb 28 (Wed) Version: 1.0 CS/ECE 374 A, Spring 2024

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1 Given an array A[l..n] of integers, compute the length of a longest increasing subsequence.

Solution:
[#1 of oo|] Add a sentinel value A[0] = —oo. Let LIS(7,j) denote the length of the longest increasing
subsequence of A[j .. n] where every element is larger than A[i]. This function obeys the following
recurrence:
0 ifj>n
LIS(i,j) = { LIS(i,j + 1) if j < n and Ali] > A[j]

max {LIS(i,5 +1),1+ LIS(j,j+ 1)} otherwise

We need to compute LIS(0,1).

Solution:

[#2 of co] Add a sentinel value A[n+1] = —oco. Let LIS(7, j) denote the length of the longest increasing
subsequence of A[l .. j] where every element is smaller than A[j]. This function obeys the following
recurrence:

0 ifi<1
LIS(i,j) = § LIS(i — 1,7) if i > 1 and Afi] > A[j]
max {LIS(i — 1,5),1+ LIS(i — 1,i)} otherwise

We need to compute LIS(n,n + 1).

Solution:

[#3 of oo| Let LIS(i) denote the length of the longest increasing subsequence of A[i .. n] that begins
with A[i]. This function obeys the following recurrence:

1 if A[j] < Ali] for all j > i

LIS(i) =
(7) {1 +max {LIS(j) | j > i and A[j] > A[i]} otherwise

(The first case is actually redundant if we define max @ = 0.) We need to compute max; LI1S(7).

Solution:

[#4 of co| Add a sentinel value A[0] = —oco. Let LIS(i) denote the length of the longest increasing
subsequence of A[i .. n] that begins with A[i]. This function obeys the following recurrence:

1 if A[j] < Al4] for all j > i

LIS(3) =
Q {1 +max {LIS(j) | j > i and A[j] > A[i]} otherwise

(The first case is actually redundant if we define max @ = 0.) We need to compute LIS(0) — 1; the —1
removes the sentinel —oo from the start of the subsequence.




Solution:
[#5 of co] Add sentinel values A[0] = —oo and A[n+1] = oo. Let LIS(j) denote the length of the longest

increasing subsequence of A[l .. j] that ends with A[j]. This function obeys the following recurrence:
1 if =0

LIS(j) =
) {1 + max {LIS(i) | i < j and A[i] < A[j]} otherwise

We need to compute LIS(n + 1) — 2; the —2 removes the sentinels —oo and oo from the subsequence.

Given an array A[l..n] of integers, compute the length of a longest decreasing subsequence.

Solution:
[one of many| Add a sentinel value A[0] = co. Let LDS(i, j) denote the length of the longest decreasing
subsequence of A[j .. n| where every element is smaller than A[:]. This function obeys the following
recurrence:
0 if j>n
LDS(i,§) = { LDS(,j +1) if j < n and A[i] < A[j]
max {LDS(i,j+1),1+ LDS(j,j + 1)} otherwise

We need to compute LDS(0,1).

Solution:

[clever| Multiply every element of A by —1, and then compute the length of the longest increasing
subsequence using the algorithm from problem 1.

Given an array A[l..n] of integers, compute the length of a longest alternating subsequence.

Solution:
[one of many] We define two functions:
e Let LAST(i,j) denote the length of the longest alternating subsequence of A[j .. n] whose first
element (if any) is larger than A[i] and whose second element (if any) is smaller than its first.
e Let LAS (i,j) denote the length of the longest alternating subsequence of A[j .. n] whose first

element (if any) is smaller than A[i] and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

0 ifj>n

LAST(i,j) = { LAST(i,j + 1) if j <n and A[j] < Ali]
max {LAS'(i,j +1),14+ LAS (j,j + 1)} otherwise
0 if j>n

LAS™(i,j) = { LAS (i,j + 1) if j <n and A[j] > A[i]

max {LAS™(i,j +1),1+ LAST(j,j + 1)} otherwise



To simplify computation, we consider two different sentinel values A[0]. First we set A[0] = —oo and let
(T = LAST(0,1). Then we set A[0] = +oc and let /~ = LAS (0,1). Finally, the length of the longest
alternating subsequence of A is max {{*, ¢~ }.

Solution:

[one of many] We define two functions:

e Let LAS'(i) denote the length of the longest alternating subsequence of A[i .. n] that starts with
Ali] and whose second element (if any) is larger than A[i].

e Let LAS™ (i) denote the length of the longest alternating subsequence of Afi .. n| that starts with
Ali] and whose second element (if any) is smaller than A[].

These two functions satisfy the following mutual recurrences:

1 if A[j] < A[i] for all j > i

LAST (i) = {1 + max {LAS_(j) | j > and A[j] > A[z]} otherwise

1 if A[j] > Ali] for all j > i

LAS™ (i) = {1 + max { LAST(j) | j > and A[j] < A[i]} otherwise

We need to compute max; max { LAST (i), LAS™ (i) }.

To think about later:

1 Given an array A[l..n] of integers, compute the length of a longest convez subsequence of A.

Solution:

Let LCS(i,7) denote the length of the longest convex subsequence of A[i .. n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max {LCS(j,k) | j < k <n and Afi] + A[k] > 2A[j]}

Here we define max@ = 0; this gives us a working base case. The length of the longest convex
subsequence is maxi<;<j<n LCS(, j).

Solution:

[with sentinels] Assume without loss of generality that A[i] > 0 for all i. (Otherwise, we can add |m|
to each A[i], where m is the smallest element of A[l .. n|.) Add two sentinel values A[0] = 2M + 1 and
A[—1] = 4M + 3, where M is the largest element of A[l .. n].

Let LCS(i,7) denote the length of the longest convex subsequence of A[i .. n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max {LCS(j,k) | j < k <n and Ali] + A[k] > 2A4[j]}

Here we define max @ = 0; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of A[l .. n]is LCS(—1,0) — 2.



Proof: First, consider any convex subsequence S of A[l .. n], and suppose its first element is A[i].
Then we have A[—1] — 2A[0] + A[i] = 4M +3 —2(2M + 1) + Ali] = Ali] + 1 > 0, which implies that
A[—1] - A[0] - S is a convex subsequence of A[—1 .. n]. So the longest convex subsequence of A[l .. n]
has length at most LCS(—1,0) — 2.

On the other hand, removing A[—1] and A[0] from any convex subsequence of A[—1 .. n| laves a convex
subsequence of A[l .. n]. So the longest subsequence of A[l .. n] has length at least LCS(—1,0) —2. m

2 Given an array A[l..n], compute the length of a longest palindrome subsequence of A.

Solution:

[naive] Let LPS(i,j) denote the length of the longest palindrome subsequence of A[i .. j]. This function
obeys the following recurrence:

0 ifti>j
1 ifi=
o max{ LPS(i+1,5) } if i < j and Ali] £ A[j]
LPS(i, j) = LPS(i,j—1)
2+ LPS(i+1,5—1)
max LPS(i+1,37) otherwise
LPS(i,j — 1)

We need to compute LPS(1,n).

Solution:

[with greedy optimization| Let LPS(i,j) denote the length of the longest palindrome subsequence of
Ali .. j]. Before stating a recurrence for this function, we make the following useful observation.

Claim 0.1. Ifi < j and Ai] = Alj], then LPS(i,j) =2+ LPS(i+ 1,5 —1).

Proof:  Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome subsequence S of A[i .. j].
There are four cases to consider.

e If S uses neither A[i] nor A[j], then A[i] @ S e A[j] is a palindrome subsequence of A[i .. j] that is
longer than S, which is impossible.

e Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k = i, then A[i] o A[j]
is a palindrome subsequence of A[i .. j] that is longer than S, which is impossible. Otherwise,
replacing A[k] with A[j] gives us a palindrome subsequence of A[i .. j] with the same length as S
that uses both A[i] and A[j].

e Suppose S uses A[j] but not A[i]. Let A[h] be the first element of S. If h = j, then Afi] o A[j]
is a palindrome subsequence of A[i .. j| that is longer than S, which is impossible. Otherwise,
replacing A[h] with A[i] gives us a palindrome subsequence of A[i .. j| with the same length as S
that uses both A[i] and A[j].

e Finally, S might include both A[i] and A[j].



In all cases, we find either a contradiction or a longest palindrome subsequence of Afi .. j] that uses
both A[i] and A[j]. ]

Claim 1 implies that the function LPS satisfies the following recurrence:

0 ifi > j
LPS(i, j) = L ifi=j
’ max { LPS(i + 1,5), LPS(i,j — 1)} if i < j and A[i] # A[j]
24 LPS(i+1,5—1) otherwise

We need to compute LPS(1,n).



