Give context-free grammars for each of the following languages.

1. \{0^{2n}1^n \mid n \geq 0\}

 Solution: \(S \to \varepsilon \mid 00S \).

2. \{0^{m}1^n \mid m \neq 2n\}

 *(Hint: If \(m \neq 2n \), then either \(m < 2n \) or \(m > 2n \)).

Solution:

To simplify notation, let \(\Delta(w) = \#(0, w) - 2\#(1, w) \). Our solution follows the following logic. Let \(w \) be an arbitrary string in this language.

- Because \(\Delta(w) \neq 0 \), then either \(\Delta(w) > 0 \) or \(\Delta(w) < 0 \).
- If \(\Delta(w) > 0 \), then \(w = 0^i z \) for some integer \(i > 0 \) and some suffix \(z \) with \(\Delta(z) = 0 \).
- If \(\Delta(w) < 0 \), then \(w = x1^j \) for some integer \(j > 0 \) and some prefix \(x \) with either \(\Delta(x) = 0 \) or \(\Delta(x) = 1 \).
- Substrings with \(\Delta = 0 \) is generated by the previous grammar; we need only a small tweak to generate substrings with \(\Delta = 1 \).

Here is one way to encode this case analysis as a CFG. The nonterminals \(M \) and \(L \) generate all strings where the number of 0s is *More* or *Less* than twice the number of 1s, respectively. The last nonterminal generates strings with \(\Delta = 0 \) or \(\Delta = 1 \).

\[
\begin{align*}
S & \to M \mid L & \{0^m1^n \mid m \neq 2n\} \\
M & \to 0M \mid 0E & \{0^m1^n \mid m > 2n\} \\
L & \to L1 \mid E1 & \{0^m1^n \mid m < 2n\} \\
E & \to \varepsilon \mid 0 \mid 00E1 & \{0^m1^n \mid m = 2n \text{ or } 2n + 1\}
\end{align*}
\]

Here is a different correct solution using the same logic. We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string is as “balanced” as possible. We also generate strings with \(\Delta = 1 \) using a separate non-terminal.

\[
\begin{align*}
S & \to AE \mid EB \mid FB & \{0^m1^n \mid m \neq 2n\} \\
A & \to 0 \mid 0A & 0^+ = \{0^i \mid i \geq 1\} \\
B & \to 1 \mid 1B & 1^+ = \{1^j \mid j \geq 1\} \\
E & \to \varepsilon \mid 00E1 & \{0^m1^n \mid m = 2n\} \\
F & \to 0E & \{0^m1^n \mid m = 2n + 1\}
\end{align*}
\]

Alternatively, we can separately generate all strings of the form \(0^{\text{odd}}1^{\ast} \), so that we don’t have to worry about the case \(\Delta = 1 \) separately.

\[
\begin{align*}
S & \to D \mid M \mid L & \{0^m1^n \mid m \neq 2n\} \\
D & \to 0 \mid 00D \mid D1 & \{0^m1^n \mid m \text{ is odd}\} \\
M & \to 0M \mid 0E & \{0^m1^n \mid m > 2n\} \\
L & \to L1 \mid E1 & \{0^m1^n \mid m < 2n \text{ and } m \text{ is even}\} \\
E & \to \varepsilon \mid 00E1 & \{0^m1^n \mid m = 2n\}
\end{align*}
\]
Solution:

Intuitively, we can parse any string $w \in L$ as follows. First, remove the first $2k$ 0s and the last k 1s, for the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by 1s.

\[
S \rightarrow 00S1 | A | B | C \quad \{0^m1^n | m \neq 2n\}
\]

\[
A \rightarrow 0 | 0A
\]

\[
B \rightarrow 1 | 1B
\]

\[
C \rightarrow 0 | 0B
\]

Lets elaborate on the above, since k is maximal, $w = 0^{2k}w'1^k$. If w' starts with 00, and ends with a 1, then we can increase k by one. As such, w' is either in $0^+ + 1^+$ or 1^+. If w' contains both 0s and 1s, then it can contain only a single 0, followed potentially by 1^+. We conclude that $w' \in 0^+ + 1^+ + 01^+$.

3 \{0,1\}^* \setminus \{0^{2n}1^n | n \geq 0\}

Solution:

This language is the union of the previous language and the complement of 0^*1^*, which is $(0+1)^*10(0+1)^*$.

\[
S \rightarrow T | X \quad \{0,1\}^* \setminus \{0^{2n}1^n | n \geq 0\}
\]

\[
T \rightarrow 00T1 | A | B | C \quad \{0^m1^n | m \neq 2n\}
\]

\[
A \rightarrow 0 | 0A
\]

\[
B \rightarrow 1 | 1B
\]

\[
C \rightarrow 0 | 0B
\]

\[
X \rightarrow Z10Z \quad (0+1)^*10(0+1)^*
\]

\[
Z \rightarrow \varepsilon | 0Z | 1Z \quad (0+1)^*
\]

Work on these later:

4 \{w \in \{0,1\}^* | \#(0,w) = 2 \cdot \#(1,w)\} - Binary strings where the number of 0s is exactly twice the number of 1s.

Solution:

\[
S \rightarrow \varepsilon | SS | 00S1 | 0S1S0 | 1S00
\]

Here is a sketch of a correctness proof.

For any string w, let $\Delta(w) = \#(0,w) - 2 \cdot \#(1,w)$. Suppose w is a binary string such that $\Delta(w) = 0$. Suppose w is nonempty and has no non-empty proper prefix x such that $\Delta(x) = 0$. There are three possibilities to consider:

- Suppose $\Delta(x) > 0$ for every proper prefix x of w. In this case, w must start with 00 and end with 1. Thus, $w = 00x1$ for some string $x \in L$.

2
• Suppose \(\Delta(x) < 0 \) for every proper prefix \(x \) of \(w \). In this case, \(w \) must start with 1 and end with 00. Let \(x \) be the shortest non-empty prefix with \(\Delta(x) = 1 \). Thus, \(w = 10x00 \) for some string \(x \in L \).

• Finally, suppose \(\Delta(x) > 0 \) for some prefix \(x \) and \(\Delta(x') < 0 \) for some longer proper prefix \(x' \). Let \(x' \) be the shortest non-empty proper prefix of \(w \) with \(\Delta < 0 \). Then \(x' = 0y1 \) for some substring \(y \) with \(\Delta(y) = 0 \), and thus \(w = 0y10z \) for some strings \(y, z \in L \).

5 \(\{0, 1\}^* \setminus \{ww | w \in \{0, 1\}^*\} \).

Solution:

All strings of odd length are in \(L \).

Let \(w \) be any even-length string in \(L \), and let \(m = \lfloor w \rfloor / 2 \). For some index \(i \leq m \), we have \(w_i \neq w_m+i \). Thus, \(w \) can be written as either \(x1y0z \) or \(x0y1z \) for some substrings \(x, y, z \) such that \(|x| = i - 1 \), \(|y| = m - 1 \), and \(|z| = m - i \). We can further decompose \(y \) into a prefix of length \(i - 1 \) and a suffix of length \(m - i \). So we can write any even-length string \(w \in L \) as either \(x1x'z'0z \) or \(x0x'z'1z \), for some strings \(x, x', z, z' \) with \(|x| = |x'| = i - 1 \) and \(|z| = |z'| = m - i \). Said more simply, we can divide \(w \) into two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

\[
\begin{align*}
S & \rightarrow AB \mid BA \mid A \mid B & \text{strings not of the form } ww \\
A & \rightarrow 0 \mid \Sigma A \Sigma & \text{odd-length strings with 0 at center} \\
B & \rightarrow 1 \mid \Sigma B \Sigma & \text{odd-length strings with 1 at center} \\
\Sigma & \rightarrow 0 \mid 1 & \text{single character}
\end{align*}
\]