CS/ECE 374 Sec A< Spring 2023

» Homework 9 &
Due Wednesday, April 5, 2023 at 10am

1. (a)

(b)

Aaron and Alex decided to host a party for the CAs at Aaron’s place. Yulie knew
that Aaron likes empanadas and decided to buy them at one of the many places that
sell them in Champaign (lucky for us!) on her way from her place to Aaron’s place.
Let G = (V, E) be a directed graph with non-negative edge lengths /(e), e € E that
represents the roads in town. Yulie entered her car to drive over and noticed that she
may not have sufficient gas to drive all the way to Aaron’s place. She estimated that
her car can go D miles before her gas runs out. She wants to get to Aaron’s place as
fast as she can. Describe an efficient algorithm to help her accomplish the task of
reaching Aaron’s place with as little travel as feasible; she needs to buy empanadas
but may or may not need to fill gas. Assume Yulie’s house is at node s and Aaron’s
place is at node ¢ and that the empanada shops are given by a set X C V and the
gas stations by a set Y C V. Assume that X, Y are disjoint sets. Also assume, for
simplicity, that once Yulie fills gas she can travel an infinite distance. Note that Yulie
could buy empanadas before or after filling up gas, as long as she does not run out of
fuel on the way to the gas station. Express your running time as a function of n, the
number of nodes, and m, the number of edges.

In the previous part we assumed that Yulie’s car can go an infinite distance after filling
up on gas. This is reasonable assumption for visits in the town. However, Yulie is now
driving to visit a friend in a different state and has to fill up gas multiple times before
reaching her destination. Assume that each full tank of gas lets her drive R miles.
Describe an efficient algorithm that minimizes her driving distance. For simplicity
assume that she starts with a full tank of gas.

For both parts your algorithm should return oo if there is no way to reach the destination
given the graph and the constraints.

2. Since you are taking an algorithms class you decided to create a fun Easter egg collection
game. You set up a maze with one way streets that can be thought of as a directed graph

G:

@)

(b)

©

(V, E)). Each node v in the maze has w(v) amount of eggs located at v.

Each of your friends, starting at a given node s, has to figure out the maximum
number of eggs they can collect. Note that eggs at node v can be collected only once
even if the node v is visited again on the way to some other place.

Your friends complain that they can collect more eggs if they get to choose the starting
node. You agree to their their request and ask them to maximize the number eggs
they can collect starting at any node they choose.

Finally, you decide that it may be wise to restrict some of friends from collecting too
many eggs, after all it is Easter. So you tell them that they can collect eggs from at
most k locations where k is a parameter you give them.

CS/ECE 374 Sec A Homework 9 (due Apr 5) Spring 2023

Before you ask your friends to solve the game you need to know how to do it yourself!
Describe efficient algorithms for these problems.

No proof necessary if you use reductions to standard algorithms via graph transforma-
tions and simple steps. Otherwise you need to prove the correctness.

3. Not to submit: Let G = (V, E) be a directed graph with non-negative edge lengths
{(e),e € E. Dijkstra’s algorithm can be used to find the shortest path tree rooted at any
given node s € V. In the standard shortest path problem the length of a path v, vo, ..., vy
is defined as Z?;ll £(v;, vi1+1) which is simply the sum of the lengths of the edges in the
path. In various situations one needs different measures.

(@)

(b)

©

(d

For a parameter £ > 1 the k-norm length of a path vy, vy,..., vy is defined to be
(Z?:_ll ((vi,vi41)F)/%. If k = 1 we get the standard length. Given G, s,t € V and
k > 1 describe an algorithm to find the shortest £-norm length path from s to ¢ in G.
Give a small example where 2-norm s-t shortest path is different from the standard
shortest path.

Consider the previous part but now suppose we set k to be a very large number. As
k — oo the k-norm of a path can be seen to be the maximum length of the edges in
the path (assume that edge lengths are distinct). This corresponds to the oo norm of
a vector which is the largest coordinate. In the context of paths, the length of the
longest edge length in a path is called its bottleneck length. Describe an algorithm to
compute the bottleneck shortest path distances from s to every node in GG by adapting
Dijkstra’s algorithm.

We will consider an alternate algorithm to compute the s-t bottleneck shortest path
distance. Given G, s,t and a value A > 0, describe a reduction to s-t reachbility to
decide whether there is a path from s-t with bottleneck length at most A. Use this
and binary search to find the s-t bottleneck distance.

Now consider another motivaton. Suppose each edge e € E has a probability p(e) of
failing. Given a path vy, vs, ..., vy, what is the probability that none of the edges in
the path fail assuming that the edges fail independently? Describe an algorithm to
find the s-t path with the least probability of failing.

CS/ECE 374 Sec A Homework 9 (due Apr 5) Spring 2023

Solved Problem

4. Although we typically speak of “the” shortest path between two nodes, a single graph could
contain several minimum-length paths with the same endpoints.

R| Yo | Corn| Yorm|
e %%@ s |
&2» \(5\ (%2)6—4) ¥2>O—4> (¥2>6—4>

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex ¢ in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that all necessary arithmetic operations
can be performed in O(1) time.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u—wv tight if dist(u) + w(u—v) = dist(v).
Every edge in a shortest path from s to ¢t must be tight. Conversely, every path from s to ¢
that uses only tight edges has total length dist(¢) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains only
to count the number of paths from s to ¢ in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to ¢; we need
to compute PathsToT(s). This function satisfies the following simple recurrence:

1 ifo=t

PathsToT(v) = ZPathsToT() otherwise

v—-w

In particular, if v is a sink but v # ¢ (and thus there are no paths from v to t), this recurrence
correctly gives us PathsToT(v) = > @ = 0.

We can memoize this function into the graph itself, storing each value PathsToT(v)
at the corresponding vertex v. Since each subproblem depends only on its successors in
H, we can compute PathsToT(v) for all vertices v by considering the vertices in reverse
topological order, or equivalently, by performing a depth-first search of H starting at s.
The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the
preprocessing phase, which runs in O(F log V') time. [

CS/ECE 374 Sec A Homework 9 (due Apr 5) Spring 2023

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the
path-counting algorithm (standard dynamic programming rubric)

