
CS/ECE 374 Sec A= Spring 2021

9 Homework 2 :
Due Wednesday, February 1, 2023 at 10am

0 Several problems on creating regular expressions and DFAs can be found in Jeff’s notes, Sipser’s
book, Aho-Motwani-Ullman book, and several others. They cover a wide range from easy to hard.
We have placed several optional problem on PrarieLearn that you can try out.

1. For each of the following languages assume that the alphabet is {0,1}. Give a regular expression
that describes that language, and briefly argue why your expression is correct.

(a) All strings that that end in 10 and contain 111 as a substring.

(b) All strings that do not contain the subsequence 010.

(c) All string in which the number of 1s is not divisible by 3.

(d) A finite language L = {w1, w2, . . . , wk} where each wi is a binary string.

(e) The complement L̄ of a finite language L = {w1, w2, . . . , wk}. You may want to consider the
parameter h=max1≤i≤k |wi|, the length of the longest string in L.

2. DFA design. For the first three parts describe a DFA by drawing it explicitly and briefly explain the
meaning of each state.

(a) All strings in {0,1}∗ that end in 11.

(b) All strings in {0,1}∗ that start with 01 and whose length is divisible by 4.

(c) All strings in {0,1}∗ that do not contain 100110 as a substring.

(d) Consider a fixed string s = a1a2 . . . ak of length k. Let Ls = {w ∈ Σ∗ | w contains string s as a substring}.
Describe in formal tuple notation a DFA M that accepts Ls. Do not try to optimize number of
states. Briefly describe the meaning of the states and your construction. How many states
does your DFA have as a function of k?

(e) Let L1, L2, L3, L4 be regular languages over Σ accepted by DFAs M1 = (Q1,Σ,δ1, s1, A1),
M2 = (Q2,Σ,δ2, s2, A2), M3 = (Q3,Σ,δ3, s3, A3), and M4 = (Q4,Σ,δ4, s4, A4) respectively.
Describe a DFA M = (Q,Σ,δ, s, A) in terms of M1, M2, M3, M4 that accepts L = {w | w is
contained in exactly one of {L1, L2, L3, L4}}. Formally specify the components Q,δ, s, and A
for M in terms of the components of M1, M2, M3, M4. You do not need to prove correctness
of the construction.

CS/ECE 374 Sec A Homework 2 (due Feb 1) Spring 2023

3. Not for submission. Consider the strings over the alphabet {0,1,2} as representing ternary
numbers (i.e., numbers in base 3). Let L be the language of strings that represent ternary numbers
divisible by 5. For example, 120 would be in the language since 1203 = 1 · 32 + 2 · 3= 15, while
200 would not.

Describe a DFA over the alphabet Σ = {0,1,2} that accepts the language L. Argue that your
machine accepts every string in L and nothing else, by explaining what each state in your DFA
means.

You may either draw the DFA or describe it formally, but the states Q, the start state s, the
accepting states A, and the transition function δ must be clearly specified.

4. Not for submission. Give a string w we use the notation wR to denote its reverse. We can extend
this notion to languages as follows. Given a language L ⊆ Σ∗ we define the reverse of L, denoted
by LR as follows:

LR = {wR | w ∈ L}.

In other words LR is the language consisting of the reverses of the strings in L. In this problem
your goal is to develop an algorithm that given a regular expression r, converts it into a regular
expression r ′ such that L(r ′) is (L(r))R. As a byproduct this also shows that LR is regular whenever
R is regular. Fix Σ to be {0,1} for simplicity.

• Consider each of the base cases of the regular expressions. For each r corresponding to the
base cases define r ′ appropriately such that L(r ′) = (L(r))R.

• Suppose r = r1 + r2. Assuming that you have found, recursively, regular expressions r ′1 and
r ′2 for the reverses of r1, r2 respectively, describe a regular expression r ′ for the reverse of
L(r).

• Suppose r = r1r2. Do the same as in the preceding part.

• Suppose r = (r1)∗. Find a regular expression r ′ for the reverse of L(r).

• Assuming r = 0∗+(01+100)∗(11∗+ε+0) what would your algorithm output for the reverse
of L(r)?

2

CS/ECE 374 Sec A Homework 2 (due Feb 1) Spring 2023

Solved problem

4. C comments are the set of strings over alphabet Σ= {*,/,A,�, �} that form a proper comment in
the C program language and its descendants, like C++ and Java. Here �represents the newline
character, � represents any other whitespace character (like the space and tab characters), and A

represents any non-whitespace character other than * or /.1 There are two types of C comments:

• Line comments: Strings of the form // · · · �.
• Block comments: Strings of the form /* · · ·*/.

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line
comment starts with // and ends at the first �after the opening //. A block comment starts with
/* and ends at the the first */ completely after the opening /*; in particular, every block comment
has at least two *s. For example, each of the following strings is a valid C comment:

• /***/

• //�//� �

• /*///�*�

�

**/

• /*�//�

��*/

On the other hand, none of the following strings is a valid C comments:

• /*/

• //�//� �� �

• /*�/*�*/�*/

(a) Describe a DFA that accepts the set of all C comments.

(b) Describe a DFA that accepts the set of all strings composed entirely of blanks (�), newlines
(�), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions without
English explanations will receive no credit, even if they are correct.

1The actual C commenting syntax is considerably more complex than described here, because of character and string literals.
• The opening /* or // of a comment must not be inside a string literal (“ · · ·“) or a (multi-)character literal (’ · · ·’).
• The opening double-quote of a string literal must not be inside a character literal (’"’) or a comment.
• The closing double-quote of a string literal must not be escaped (\")
• The opening single-quote of a character literal must not be inside a string literal (" · · ·’ · · ·") or a comment.
• The closing single-quote of a character literal must not be escaped (\’)
• A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string "/*\\\"*/"/*"/*\"/*"*/ is a valid string literal (representing the 5-character string /*\"*/, which
is itself a valid block comment!) followed immediately by a valid block comment. For this homework question, just pretend
that the characters ’, ", and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.
Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other

languages, like OCaml, explicitly allow nesting block comments.

3

CS/ECE 374 Sec A Homework 2 (due Feb 1) Spring 2023

Solution:

(a) The following eight-state DFA recognizes the language of C comments. All missing transitions
lead to a hidden reject state.

/*A◇

*

/

/

↲

*

*

/

A◇↲

/A◇↲
s /

// L

/* /** B

The states are labeled mnemonically as follows:

• s — We have not read anything.
• /— We just read the initial /.
• //— We are reading a line comment.
• L — We have read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after the opening /*.
• /** — We are reading a block comment, and we just read a * after the opening /*.
• B — We have read a complete block comment.

(b) By merging the accepting states of the previous DFA with the start state and adding white-
space transitions at the start state, we obtain the following six-state DFA. Again, all missing
transitions lead to a hidden reject state.

/*A◇

*

/

/↲

*
/

A◇↲

s /

//

/*/**

◇↲

/A◇↲*

The states are labeled mnemonically as follows:

• s — We are between comments.
• /— We just read the initial / of a comment.
• //— We are reading a line comment.
• /* — We are reading a block comment, and we did not just read a * after the opening /*.
• /** — We are reading a block comment, and we just read a * after the opening /*.

4

CS/ECE 374 Sec A Homework 2 (due Feb 1) Spring 2023

�

Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric (DFA design): For problems worth 10 points:

• 2 points for an unambiguous description of a DFA, including the states set Q, the
start state s, the accepting states A, and the transition function δ.

– For drawings: Use an arrow from nowhere to indicate s, and doubled
circles to indicate accepting states A. If A = ∅, say so explicitly. If your
drawing omits a reject state, say so explicitly. Draw neatly! If we can’t
read your solution, we can’t give you credit for it,.

– For text descriptions: You can describe the transition function either
using a 2d array, using mathematical notation, or using an algorithm.

– For product constructions: You must give a complete description of the
states and transition functions of the DFAs you are combining (as either
drawings or text), together with the accepting states of the product DFA.

• Homework only: 4 points for briefly and correctly explaining the purpose of
each state in English. This is how you justify that your DFA is correct.

– For product constructions, explaining the states in the factor DFAs is
enough.

– Deadly Sin: (“Declare your variables.”) No credit for the problem if the
English description is missing, even if the DFA is correct.

• 4 points for correctness. (8 points on exams, with all penalties doubled)

– −1 for a single mistake: a single misdirected transition, a single missing or
extra accept state, rejecting exactly one string that should be accepted, or
accepting exactly one string that should be accepted.

– −2 for incorrectly accepting/rejecting more than one but a finite number
of strings.

– −4 for incorrectly accepting/rejecting an infinite number of strings.

• DFA drawings with too many states may be penalized. DFA drawings with
significantly too many states may get no credit at all.

• Half credit for describing an NFA when the problem asks for a DFA.

5

