
CS/ECE 374 Sec A = Spring 2023

9 Homework 1 :
Due Wednesday, Jan 25, 2023 at 10am

• You can work in a group of up to three students. Read the instructions on the course website for
additional details.

• Submit your solutions electronically on the course Gradescope site as PDF files. Submit a
separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the
LATEX solution template on the course web site. If you must submit scanned handwritten solutions,
please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner,
not just a phone camera).

T Some important course policies U

• You may use any source at your disposal—paper, electronic, or human—but you must cite every
source that you use, and you must write everything yourself in your own words. See the academic
integrity policies on the course web site for more details.

• Unlike some previous semesters we will not have the “I Don’t Know (IDK)” policy this semester for
home works or exams.

• Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the following
rules will be given an automatic zero, unless the solution is otherwise perfect. Yes, we really mean
it. We’re not trying to be scary or petty (Honest!), but we do want to break a few common bad
habits that seriously impede mastery of the course material.

– Always give complete solutions, not just examples.
– Always declare all your variables, in English. In particular, always describe the specific

problem your algorithm is supposed to solve.
– Never use weak induction.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.
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0. Read the course policies and the instructions for this home work before you start.

1. Consider the following recurrence.

T (n) = T (bn/2c) + 2T (bn/3c) + n2 n≥ 4, and T (n) = 1 1≤ n< 4.

One can prove that T (n) = O(n2). The goal of this problem is to show a more general statement
and to refresh your induction skills.

Let c1, c2, c3 be rational numbers such that 0 < c1 ≤ c2 ≤ c3 and c2
1 + c2

2 + c2
3 < 1. Let γ > 0.

Consider the recurrence

T (n) = T (bc1nc) + T (bc2nc) + T (bc3nc) + γn2, n> 1/c1, T (n) = 1 n≤ 1/c1.

• Prove by induction that T(n) = O(n2). More precisely show that T(n) ≤ an2 + b for n ≥ 1
where a, b ≥ 0 are some fixed but suitably chosen constants (you get to choose and fix them
based on c1, c2, c3,γ). You may first want to try the concrete recurrence at the start of the
problem. How does a depend on c1, c2, c3,γ?

• Consider the recursion tree for the recurrence. What is an asymptotic upper bound on the
depth of the recursion tree? Express this as a function of n and c1, c2, c3. You do not need to
prove correctness of your bound.

• We now consider a somewhat more general setting. Let 0< c1 ≤ c2 . . .≤ ck < 1 be k rationals
such that
∑k

i=1 c2
i < 1. And γ > 0. Suppose we have a recurrence of the form

T (n) =
k
∑

i=1

T (bcinc) + γn2, n> 1/c1, T (n) = 1 n≤ 1/c1.

You can show that T (n) = O(n2) via induction as in the simpler case when k = 3. State the
bound for a in this more general setting and also the depth of the recursion as a function of
n, c1, c2, . . . , ck. You do not need to prove correctness of your bound.

2. Consider the set of strings L1 ⊆ {0,1}∗ defined recursively as follows:

• The string ε is in L1.

• For any string x in L1, the strings x0101 and the strings x1010 are also in L1.

• For any strings x , y such that the string x y ∈ L1, the strings x00y and strings x11y are in
L1 (in other words given any string z in L1, inserting 00 or 11 anywhere in z yields another
string in L1).

• The only strings in L1 are the ones generated by the preceding rules.

Let Lee be the set of binary strings that have an even number of 0’s and an even number of 1’s.

(a) Prove by induction that L1 ⊆ Lee.

(b) Prove by induction that Lee ⊆ L1 (you will need strong induction).
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(c) Now consider another language L2 defined with the same rules as those of L1 except that we
change the base case rule. Instead of ε ∈ L1, in L2 we say that the string 1 is in L2. Let Leo
be the set of binary strings that have an even number of 0’s and an odd number of 1’s. As in
the first part, one can prove that L2 ⊆ Leo. It is tempting to believe that Leo ⊆ L2 but this is
false. Give a string in Leo − L2, that is a string that is in Leo but not in L2. Then describe an
infinite set of strings L′ such that L′ ⊆ Leo but L′ ∩ L2 = ;. You do not need to formally prove
the correctness of this part but provide a clear description of L′ and briefly explain why the
strings in L′ are not in L2.

Let #(a, w) denote the number of times symbol a appears in string w; for example,

#(0,101110101101011) = 5 and #(1,101110101101011) = 10.

You may assume without proof that #(a, uv) = #(a, u) +#(a, v) for any symbol a and any
strings u and v, or any other result proved in class, in lab, or in the lecture notes. Otherwise, your
proofs must be formal and self-contained.

3. For your reading, do not submit for grading: Suppose S is a set of 103 integers. Prove that
there is a subset S′ ⊆ S of at least 15 numbers such that the difference of any two numbers in S′ is
a multiple of 7. Hint: See solved problem.

4. For your reading, do not submit for grading: Let Σ be a finite alphabet and let L be the set of
all finite languages over Σ. Prove thatL is countable. Note that Cantor’s diagonalization argument
(review CS 173 material if you have forgotten about countability) shows that if |Σ| ≥ 2 the set of
all languages over Σ is not countable.

Each homework assignment will include at least one solved problem, similar to the problems assigned in
that homework, together with the grading rubric we would apply if this problem appeared on a homework
or exam. These model solutions illustrate our recommendations for structure, presentation, and level of
detail in your homework solutions. Of course, the actual content of your solutions won’t match the model
solutions, because your problems are different!
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Solved Problems

1. Suppose S is a set of n+ 1 integers. Prove that there exist distinct numbers x , y ∈ S such that
x − y is a multiple of n.

Solution: We will use the pigeon hole principle. Let the n+1 numbers in S be a1, a2, . . . , an+1 and
consider b1, b2, . . . , bn+1 where bi = ai mod n. Note that each bi belongs to the set {0, 1, . . . , n−1}.
By the pigeon hole principle we must have two numbers bi and b j, i 6= j such that bi = b j. This
implies that ai mod n= a j mod n and hence ai − a j is divisible by n.

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points
for the idea of using mod n. 6 points for a full correct proof. Any other correct proof
would also fetch 10 points.

�

2. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w= ε

xR • a if w= a · x

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR,
POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

(b) Prove w= wR for every palindrome w (according to your recursive definition).

(c) Prove that every string w such that w = wR is a palindrome (according to your recursive
definition).

In parts (b) and (c), you may assume without proof that (x · y)R = yR • xR and (xR)R = x for all
strings x and y .

Solution:

(a) A string w ∈ Σ∗ is a palindrome if and only if either

• w= ε, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗.

Rubric: 2 points = ½ for each base case + 1 for the recursive case. No credit for the
rest of the problem unless this is correct.

(b) Let w be an arbitrary palindrome.
Assume that x = xR for every palindrome x such that |x |< |w|.
There are three cases to consider (mirroring the three cases in the definition):

• If w= ε, then wR = ε by definition, so w= wR.
• If w= a for some symbol a ∈ Σ, then wR = a by definition, so w= wR.
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• Suppose w= axa for some symbol a ∈ Σ and some palindrome x ∈ P. Then

wR = (a · x • a)R

= (x • a)R • a by definition of reversal

= aR • xR • a You said we could assume this.

= a • xR • a by definition of reversal

= a • x • a by the inductive hypothesis

= w by assumption

In all three cases, we conclude that w= wR.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let w be an arbitrary string such that w= wR.
Assume that every string x such that |x |< |w| and x = xR is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

• If w= ε, then w is a palindrome by definition.
• If w= a for some symbol a ∈ Σ, then w is a palindrome by definition.
• Otherwise, we have w= ax for some symbol a and some non-empty string x .

The definition of reversal implies that wR = (ax)R = xRa.
Because x is non-empty, its reversal xR is also non-empty.
Thus, xR = b y for some symbol b and some string y .
It follows that wR = b ya, and therefore w= (wR)R = (b ya)R = a yR b.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that w= wR implies that b ya = a yR b.
The recursive definition of string equality immediately implies a = b.

Because a = b, we have w= a yRa and wR = a ya.
The recursive definition of string equality implies yRa = ya.
It immediately follows that (yRa)R = (ya)R.
Known properties of reversal imply (yRa)R = a(yR)R = a y and (ya)R = a yR.
It follows that a yR = a y , and therefore y = yR.
The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from a ya = a yRa directly to y = yR.

�
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Rubric (induction): For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object

+ 2 for a valid strong induction hypothesis

– Deadly Sin! Automatic zero for stating a weak induction hypothesis,
unless the rest of the proof is perfect.

+ 2 for explicit exhaustive case analysis

– No credit here if the case analysis omits an infinite number of objects. (For
example: all odd-length palindromes.)

– −1 if the case analysis omits an finite number of objects. (For example:
the empty string.)

– −1 for making the reader infer the case conditions. Spell them out!

– No penalty if cases overlap (for example:

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)

– No credit here if one or more “base cases” are missing.

+ 2 for correctly applying the stated inductive hypothesis

– No credit here for applying a different inductive hypothesis, even if that
different inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive
cases”)

– No credit here if one or more “inductive cases” are missing.
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