

Due Wednesday, Jan 25, 2023 at 10am

- You can work in a group of up to **three** students. Read the instructions on the course website for additional details.
- Submit your solutions electronically on the course Gradescope site as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the $\&T_EX$ solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner, not just a phone camera).

🕼 Some important course policies 🔊

- You may use any source at your disposal—paper, electronic, or human—but you *must* cite *every* source that you use, and you *must* write everything yourself in your own words. See the academic integrity policies on the course web site for more details.
- Unlike some previous semesters we will **not** have the "I Don't Know (IDK)" policy this semester for home works or exams.
- Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the following rules will be given an *automatic zero*, unless the solution is otherwise perfect. Yes, we really mean it. We're not trying to be scary or petty (Honest!), but we do want to break a few common bad habits that seriously impede mastery of the course material.
 - Always give complete solutions, not just examples.
 - Always declare all your variables, in English. In particular, always describe the specific problem your algorithm is supposed to solve.
 - Never use weak induction.

See the course web site for more information.

If you have any questions about these policies, please don't hesitate to ask in class, in office hours, or on Piazza.

- 0. Read the course policies and the instructions for this home work before you start.
- 1. Consider the following recurrence.

$$T(n) = T(\lfloor n/2 \rfloor) + 2T(\lfloor n/3 \rfloor) + n^2$$
 $n \ge 4$, and $T(n) = 1$ $1 \le n < 4$.

One can prove that $T(n) = O(n^2)$. The goal of this problem is to show a more general statement and to refresh your induction skills.

Let c_1, c_2, c_3 be rational numbers such that $0 < c_1 \le c_2 \le c_3$ and $c_1^2 + c_2^2 + c_3^2 < 1$. Let $\gamma > 0$. Consider the recurrence

$$T(n) = T(\lfloor c_1 n \rfloor) + T(\lfloor c_2 n \rfloor) + T(\lfloor c_3 n \rfloor) + \gamma n^2, \quad n > 1/c_1, T(n) = 1 \quad n \le 1/c_1.$$

- Prove by induction that $T(n) = O(n^2)$. More precisely show that $T(n) \le an^2 + b$ for $n \ge 1$ where $a, b \ge 0$ are some fixed but suitably chosen constants (you get to choose and fix them based on c_1, c_2, c_3, γ). You may first want to try the concrete recurrence at the start of the problem. How does *a* depend on c_1, c_2, c_3, γ ?
- Consider the recursion tree for the recurrence. What is an asymptotic upper bound on the depth of the recursion tree? Express this as a function of n and c_1, c_2, c_3 . You do not need to prove correctness of your bound.
- We now consider a somewhat more general setting. Let $0 < c_1 \le c_2 \dots \le c_k < 1$ be *k* rationals such that $\sum_{i=1}^k c_i^2 < 1$. And $\gamma > 0$. Suppose we have a recurrence of the form

$$T(n) = \sum_{i=1}^{k} T(\lfloor c_i n \rfloor) + \gamma n^2, \quad n > 1/c_1, T(n) = 1 \quad n \le 1/c_1.$$

You can show that $T(n) = O(n^2)$ via induction as in the simpler case when k = 3. State the bound for *a* in this more general setting and also the depth of the recursion as a function of $n, c_1, c_2, ..., c_k$. You do not need to prove correctness of your bound.

- 2. Consider the set of strings $L_1 \subseteq \{0, 1\}^*$ defined recursively as follows:
 - The string ε is in L_1 .
 - For any string x in L_1 , the strings x0101 and the strings x1010 are also in L_1 .
 - For any strings x, y such that the string $xy \in L_1$, the strings x00y and strings x11y are in L_1 (in other words given any string z in L_1 , inserting 00 or 11 anywhere in z yields another string in L_1).
 - The only strings in L_1 are the ones generated by the preceding rules.

Let L_{ee} be the set of binary strings that have an even number of **0**'s and an even number of **1**'s.

- (a) Prove by induction that $L_1 \subseteq L_{ee}$.
- (b) Prove by induction that $L_{ee} \subseteq L_1$ (you will need strong induction).

(c) Now consider another language L_2 defined with the same rules as those of L_1 except that we change the base case rule. Instead of $\varepsilon \in L_1$, in L_2 we say that the string 1 is in L_2 . Let L_{eo} be the set of binary strings that have an even number of **0**'s and an odd number of **1**'s. As in the first part, one can prove that $L_2 \subseteq L_{eo}$. It is tempting to believe that $L_{eo} \subseteq L_2$ but this is false. Give a string in $L_{eo} - L_2$, that is a string that is in L_{eo} but not in L_2 . Then describe an *infinite* set of strings L' such that $L' \subseteq L_{eo}$ but $L' \cap L_2 = \emptyset$. You do not need to formally prove the correctness of this part but provide a clear description of L' and briefly explain why the strings in L' are not in L_2 .

Let #(a, w) denote the number of times symbol *a* appears in string *w*; for example,

#(0, 101110101101011) = 5 and #(1, 101110101101011) = 10.

You may assume without proof that #(a, uv) = #(a, u) + #(a, v) for any symbol *a* and any strings *u* and *v*, or any other result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained.

3. For your reading, do not submit for grading: Suppose *S* is a set of 103 integers. Prove that there is a subset $S' \subseteq S$ of at least 15 numbers such that the difference of any two numbers in *S'* is a multiple of 7. *Hint*: See solved problem.

4. For your reading, do not submit for grading: Let Σ be a *finite* alphabet and let ℒ be the set of all *finite* languages over Σ. Prove that ℒ is countable. Note that Cantor's diagonalization argument (review CS 173 material if you have forgotten about countability) shows that if |Σ| ≥ 2 the set of all languages over Σ is *not* countable.

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply *if* this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual *content* of your solutions won't match the model solutions, because your problems are different!

Solved Problems

1. Suppose *S* is a set of n + 1 integers. Prove that there exist distinct numbers $x, y \in S$ such that x - y is a multiple of *n*.

Solution: We will use the pigeon hole principle. Let the n + 1 numbers in S be $a_1, a_2, \ldots, a_{n+1}$ and consider $b_1, b_2, \ldots, b_{n+1}$ where $b_i = a_i \mod n$. Note that each b_i belongs to the set $\{0, 1, \ldots, n-1\}$. By the pigeon hole principle we must have two numbers b_i and b_j , $i \neq j$ such that $b_i = b_j$. This implies that $a_i \mod n = a_i \mod n$ and hence $a_i - a_j$ is divisible by n.

Rubric: 2 points for recognizing that the pigeon hole principle can be used. 2 points for the idea of using $\mod n$. 6 points for a full correct proof. Any other correct proof would also fetch 10 points.

2. Recall that the *reversal* w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = a \cdot x \end{cases}$$

A *palindrome* is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

- (a) Give a recursive definition of a palindrome over the alphabet Σ .
- (b) Prove $w = w^R$ for every palindrome w (according to your recursive definition).
- (c) Prove that every string *w* such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \cdot x^R$ and $(x^R)^R = x$ for all strings x and y.

Solution:

- (a) A string $w \in \Sigma^*$ is a palindrome if and only if either
 - $w = \varepsilon$, or
 - w = a for some symbol $a \in \Sigma$, or
 - w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this is correct.

(b) Let *w* be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome *x* such that |x| < |w|.

There are three cases to consider (mirroring the three cases in the definition):

- If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.
- If w = a for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.

• Suppose w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$w^R = (a \cdot x \bullet a)^R$	
$=(x \bullet a)^R \bullet a$	by definition of reversal
$= a^{R} \bullet x^{R} \bullet a$	You said we could assume this.
$= a \bullet x^R \bullet a$	by definition of reversal
$= a \bullet x \bullet a$	by the inductive hypothesis
= w	by assumption

In all three cases, we conclude that $w = w^R$.

Rubric: 4 points: standard induction rubric (scaled)

(c) Let *w* be an arbitrary string such that $w = w^R$.

Assume that every string *x* such that |x| < |w| and $x = x^R$ is a palindrome.

There are three cases to consider (mirroring the definition of "palindrome"):

- If $w = \varepsilon$, then *w* is a palindrome by definition.
- If w = a for some symbol $a \in \Sigma$, then *w* is a palindrome by definition.
- Otherwise, we have w = ax for some symbol a and some non-empty string x. The definition of reversal implies that w^R = (ax)^R = x^Ra. Because x is non-empty, its reversal x^R is also non-empty. Thus, x^R = by for some symbol b and some string y. It follows that w^R = bya, and therefore w = (w^R)^R = (bya)^R = ay^Rb.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that $w = w^R$ implies that $bya = ay^R b$. The recursive definition of string equality immediately implies a = b.

Because a = b, we have $w = ay^R a$ and $w^R = aya$. The recursive definition of string equality implies $y^R a = ya$. It immediately follows that $(y^R a)^R = (ya)^R$. Known properties of reversal imply $(y^R a)^R = a(y^R)^R = ay$ and $(ya)^R = ay^R$. It follows that $ay^R = ay$, and therefore $y = y^R$. The inductive hypothesis now implies that y is a palindrome.

We conclude that *w* is a palindrome by definition.

In all three cases, we conclude that *w* is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from $aya = ay^R a$ directly to $y = y^R$.

Rubric (induction): For problems worth 10 points:

- + 1 for explicitly considering an *arbitrary* object
- + 2 for a valid **strong** induction hypothesis
 - Deadly Sin! Automatic zero for stating a weak induction hypothesis, unless the rest of the proof is *perfect*.
- + 2 for explicit exhaustive case analysis
 - No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
 - -1 if the case analysis omits an finite number of objects. (For example: the empty string.)
 - -1 for making the reader infer the case conditions. Spell them out!
 - No penalty if cases overlap (for example:
- + 1 for cases that do not invoke the inductive hypothesis ("base cases")
 - No credit here if one or more "base cases" are missing.
- + 2 for correctly applying the *stated* inductive hypothesis
 - No credit here for applying a *different* inductive hypothesis, even if that different inductive hypothesis would be valid.
- + 2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
 - No credit here if one or more "inductive cases" are missing.