
Discussion 14b: Apr 26 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2024

Proving that a language L is undecidable by reduction requires several steps.

1. Choose a language L′ that you already know is undecidable (because we told you so in class). The simplest

choice is usually the standard halting language

Halt :=
{
⟨M,w⟩

∣∣ M halts on w
}

2. Describe an algorithm that decides L′, using an algorithm that decides L as a black box. Typically your

reduction will have the following form:

Given an arbitrary string x, construct a special string y,
such that y ∈ L if and only if x ∈ L′.

In particular, if L = Halt, your reduction will have the following form:

Given the encoding ⟨M,w⟩ of a Turing machine M and a string w,
construct a special string y, such that

y ∈ L if and only if M halts on input w.

3. Prove that your algorithm is correct. This proof almost always requires two separate steps:

(a) Prove that if x ∈ L′ then y ∈ L.

(b) Prove that if x ̸∈ L′ then y ̸∈ L.

Very important: Name every object in your proof, and always refer to objects by their names. Never refer

to �the Turing machine� or �the algorithm� or �the input string� or (gods forbid) �it� or �this�, even in casual

conversation, even if you're �just� explaining your intuition, even when you're just thinking about the reduction.

Prove that the following languages are undecidable.

1 AcceptIllini :=
{
⟨M⟩

∣∣ M accepts the string ILLINI
}

2 AcceptThree :=
{
⟨M⟩

∣∣ M accepts exactly three strings
}

3 AcceptPalindrome :=
{
⟨M⟩

∣∣ M accepts at least one palindrome
}

1


