CS/ECE 374 Lab 7a Solutions Fall 2025

Describe recursive backtracking algorithms for the following longest-subsequence problems.
Don’t worry about running times.

1. Given an array A[1..n] of integers, compute the length of a longest increasing subsequence.

Solution (#1 of oo: suffix plus fencepost): Add a sentinel value A[0] = —o0. Let
LIS(i, j) denote the length of the longest increasing subsequence of the suffix A[j..n]
where every element is larger than A[i]. This function obeys the following recurrence:

0 ifj>n
LIS(i,j) = { LIS(i,j + 1) if i <nand A[i] > A[j]
max {LIS(i,j+1),1+LIS(j,j+ 1)} otherwise

We need to compute LIS(0, 1). [|

Solution (#2 of co: prefix plus fencepost): Add a sentinel value A[n + 1] = oo.
Let LIS(i, j) denote the length of the longest increasing subsequence of the prefix
A[1..i] where every element is smaller than A[j]. This function obeys the following

recurrence:
0 ifi<l1
LIS(i,j) = { LIS(i—1,) ifi >1andA[i] > A[j]
max {LIS(i—1,j),1+LIS(i—1,i)} otherwise
We need to compute LIS(n,n + 1). []

Solution (#3 of oo: suffix): Let LIS(i) denote the length of the longest increasing
subsequence of the suffix A[i..n] that begins with A[i]. This function obeys the
following recurrence:

LIS(i) 1 ifA[j]1<A[i]forall j >i
l =
1+max{LIS(j) | j>iand A[j]>A[i]} otherwise

(The first case is actually redundant if we define max@ = 0.) We need to compute
max; LIS(i). [|

Solution (#4 of oco: suffix): Add a sentinel value A[0] = —oo. Let LIS(i) denote
the length of the longest increasing subsequence of the suffix A[i .. n] that begins with
A[i]. This function obeys the following recurrence:

LIS(i) 1 ifA[j1<A[i]forall j >i
1)=
1 + max {LIS(j) ’ j>iandA[j] >A[i]} otherwise

(The first case is actually redundant if we define max@ = 0.) We need to compute
LIS(0) — 1; the —1 removes the sentinel —oo from the start of the subsequence. W

CS/ECE 374 Lab 7a Solutions Fall 2025

Solution (#5 of co: prefix): Add sentinel values A[0] = —oo and A[n+ 1] = oo.
Let LIS(j) denote the length of the longest increasing subsequence of the prefix A[O.. j]
that ends with A[j]. This function obeys the following recurrence:

o 1 ifi=0
7= 1 +max{LIS(i) | i <jandA[i] <A[j]} otherwise

We need to compute LIS(n + 1) — 2; the —2 removes the sentinels —oo and oo from

the subsequence. [|

CS/ECE 374 Lab 7a Solutions Fall 2025

2. Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence.

Solution (one of many): Add a sentinel value A[0] = oo. Let LDS(i, j) denote the
length of the longest decreasing subsequence of A[j..n] where every element is
smaller than A[i]. This function obeys the following recurrence:

0 ifj>n
LDS(i,j) = { LDS(i,j + 1) if i <nandA[i] <A[j]
max {LDS(i,j+1),1+LDS(j,j+ 1)} otherwise

We need to compute LDS(0, 1). [|

Solution (clever): Reverse the array A, and then compute the length of the longest
increasing subsequence using the algorithm from problem 1. |

Solution (clever): Multiply every element of A by —1, and then compute the length
of the longest increasing subsequence using the algorithm from problem 1. [|

CS/ECE 374 Lab 7a Solutions Fall 2025

3. GivenanarrayA[1..n] of integers, compute the length of a longest alternating subsequence.

Solution (one of many): The problem statement defines alternating sequences as
first going down and then going up (\,,/"\\,/"...), but we also need to recursively
consider alternating sequences that first go up and then go down (,/\,,/"\\...). To
that end, we define two functions:

* Let LAS*(i, j) denote the length of the longest alternating subsequence of A[j ..n]
whose first element (if any) is larger than A[i] and whose second element (if
any) is smaller than its first. (These are “standard” alternating subsequences.)

e Let LAS™(i, j) denote the length of the longest alternating subsequence of A[j..n]
whose first element (if any) is smaller than A[i] and whose second element (if
any) is larger than its first. (These are “inverted” alternating subsequences.)

These two functions satisfy the following mutual recurrences:

0 ifj>n

LAS™(i,j)=<{ LAS™(i,j + 1) if j <nandA[j] <A[i]
max {LAS+(i,j +1),1+LAS (j,j + 1)} otherwise
0 ifj>n

LAS(i,j) = { LAS~(i,j + 1) if j <nand A[j] > A[i]
max {LAS_(i,j +1),1+LAS*(j,j+1)} otherwise

Finally, if we add a sentinel value A[0] = —oo, then the length of the longest
alternating subsequence of A is LAS*(0, 1).]

Solution (one of many): We define two functions:

e Let LAST(i) denote the length of the longest alternating subsequence of A[i..n]
that starts with A[i] and whose second element (if any) is smaller than A[i].
(These are “standard” alternating subsequences.)

e Let LAS™(i) denote the length of the longest alternating subsequence of A[i..n]
that starts with A[i] and whose second element (if any) is larger than A[i].
(These are “inverted” alternating subsequences.)

These two functions satisfy the following mutual recurrences:
LAS*(i) = 1+max {LAS™(j) | j > i and A[j] <A[i]}
LAS™(i) = 1+max {LAS*(j) | j > i and A[j] > A[i]}

In both recurrences, we assume max@ = 0 so that we have working base cases. We
need to compute max; LAS™ (i). []

CS/ECE 374 Lab 7a Solutions Fall 2025

Harder problems to think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A.

Solution: Let LCS(i,j) denote the length of the longest convex subsequence of
Ali..n] whose first two elements are A[i] and A[j]. This function obeys the following
recurrence:

LCS(i,j) = 1+ max{LCS(j,k) | j < k <n and A[i]+A[k] > 24[j]}

Here we define max @ = 0; this gives us a working base case. The length of the longest
convex subsequence is max; < j<, LCS(i, j)- [|

Solution (with sentinels): Assume without loss of generality that A[i] > 0 for all i.
(Otherwise, we can add |m| to each A[i], where m is the smallest element of A[1..1].)
Add two sentinel values A{0] = 2M + 1 and A[—1] = 4M + 3, where M is the largest
element of A[1..n].

Let LCS(i, j) denote the length of the longest convex subsequence of A[i..n] whose
first two elements are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max {LCS(j,k) | j < k < n and A[i]+A[k] > 24[j]}

Here we define max @ = 0; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of A[1..n] is
LCS(—1,0) — 2.
Proof: First, consider any convex subsequence S of A[1..n], and suppose its first
element is A[i]. Then we have A[—1]—2A[0]+A[i]=4M +3—2(2M + 1)+ Ali] =
A[i]+ 1> 0, which implies that A[—1]-A[0] - S is a convex subsequence of A[—1..n].
So the longest convex subsequence of A[1..n] has length at most LCS(—1,0) — 2.

On the other hand, removing A[—1] and A[0] from any convex subsequence of
A[—1..n] laves a convex subsequence of A[1..n]. So the longest subsequence of
A[1..n] has length at least LCS(—1,0) — 2. m|

CS/ECE 374 Lab 7a Solutions Fall 2025

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.

Solution (naive): Let LPS(i,j) denote the length of the longest palindrome sub-
sequence of A[i .. j]. This function obeys the following recurrence:

(0 ifi>
1 ifi=j
LPS(i+1,j
- max{ (l_)) } ifi <jandA[i]#A[j]
LPS(i, j) = 4 LPS(i,j—1)

2+LPS(i+1,j—1)
max LPS(i+1,7) otherwise
LPS(i,j—1)

We need to compute LPS(1, n). [|

Solution (with greedy optimization): Let LPS(i,j) denote the length of the longest
palindrome subsequence of A[i .. j]. Before stating a recurrence for this function, we
make the following useful observation.”

Claim 1. Ifi < j and A[i] = A[j], then LPS(i, j) = 2+ LPS(i + 1, j — 1).

Proof: Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome sub-
sequence S of A[i..j]. There are four cases to consider.

e If S uses neither A[i] nor A[j], then A[i] * S * A[j] is a palindrome subsequence
of A[i..j] that is longer than S, which is impossible.

e Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k =1,
then A[i] A[j] is a palindrome subsequence of A[i .. j] that is longer than S,
which is impossible. Otherwise, replacing A[k] with A[j] gives us a palindrome
subsequence of A[i .. j] with the same length as S that uses both A[i] and A[j].

e Suppose S uses A[j] but not A[i]. Let A[h] be the first element of S. If h = j,
then A[i] ® A[j] is a palindrome subsequence of A[i .. j] that is longer than S,
which is impossible. Otherwise, replacing A[h] with A[7] gives us a palindrome
subsequence of A[i .. j] with the same length as S that uses both A[i] and A[j].

* Finally, S might include both A[i] and A[j].

In all cases, we find either a contradiction or a longest palindrome subsequence of
Ali .. j] that uses both A[i] and A[j]. O

CS/ECE 374 Lab 7a Solutions Fall 2025

Claim 1 implies that the function LPS satisfies the following recurrence:

0 ifi>j
ifi=j
LPS(i,) = | | o
max {LPS(l +1,j), LPS(i,j — 1)} ifi<jand Ali] #A[j]
2+LPS(i+1,j—1) otherwise
We need to compute LPS(1, n). [|

“And yes, optimizations like this always require a proof of correctness, both in homework and on
exams. Premature optimization is the root of all evil.

