
CS/ECE 374 Lab 6b Solutions Fall 2025

1. Consider the following recurrence, originally used by the Sanksrit prosodist Piṅgala in the
second century bce, to compute the number 2n:

2n =











1 if n= 0

(2n/2)2 if n> 0 is even
2 · (2⌊n/2⌋)2 if n is odd

We can use this algorithm to compute the decimal representation of 2n, by representing all
numbers using arrays of decimal digits, and implementing squaring and doubling using
decimal arithmetic. Suppose we use Karatsuba’s algorithm for decimal multiplication.
What is the running time of the resulting algorithm?

Solution: Let’s write the algorithm in pseudocode. Our input is an integer n; the
desired output is a an array of decimal digits containing the decimal representation
of n. We use two subroutines for decimal arithmetic:

• DecimalSquare(Z) takes a decimal string Z as input, representing some inte-
ger z, and returns the decimal representation of the integer z2. For example,
DecimalSquare(“374”) returns the string “139876”. If we implement this
subroutine using Karatsuba’s algorithm, then it runs in O(|Z |lg3) time.

• DecimalDouble(Z) takes a decimal string Z as input, representing some inte-
ger z, and returns the decimal representation of the integer 2z. For example,
DecimalDouble(“374”) returns the string “748”. This subroutine uses a simple
for-loop and thus runs in O(|Z |) time.

DecimalTwoToThe(n):
if n= 0

return “1”
m← ⌊n/2⌋
Z ← DecimalTwoToThe(m) 〈〈recurse!〉〉
Z ← DecimalSquare(Z) 〈〈Karatsuba〉〉
if n is odd

Z ← DecimalDouble(Z) 〈〈brute force〉〉
return Z

Because log10(2
m) = Θ(n), the output string has length Θ(n). It follows that the call

to DecimalSquare takes O(nlg3) time, and the call to DecimalDouble (if n is odd)
takes O(n) time. Thus, the running time of this algorithm satisfies the recurrence

T (n) = T (⌊n/2⌋) +O(nlg3).

We can safely ignore the floor in the recursive argument. The recursion “tree” for
this algorithm is just a path; the value of the single node at depth i is O((n/2i)lg 3) =
O(nlg3/3i).

1

CS/ECE 374 Lab 6b Solutions Fall 2025

nlg 3

nlg 3/3

nlg 3/9

The level “sums” form a descending geometric series, which is dominated by its largest
term, at level 0. We conclude that our algorithm runs in O(nlg 3) time. ■

2

CS/ECE 374 Lab 6b Solutions Fall 2025

2. We can use a similar algorithm to convert the binary representation of any integer into its
decimal representation. Suppose we are given an integer x as an array of n bits (binary
digits). Write x = a · 2n/2 + b, where a is represented by the top n/2 bits of x , and b is
represented by the bottom n/2 bits of x . Then we can convert x into decimal as follows:

(a) Recursively convert a into decimal.
(b) Recursively convert 2n/2 into decimal.
(c) Recursively convert b into decimal.
(d) Compute x = a · 2n/2 + b using decimal multiplication and addition.

Now suppose we use Karatsuba’s algorithm for decimal multiplication. What is the running
time of the resulting algorithm? (For simplicity, you can assume n is a power of 2.)

Solution: Here is the algorithm in pseudocode. (The lines in red are what we will
change in problem 3.)

Decimal(X [0 .. n− 1]):
if n< 100

use brute force
m← ⌈n/2⌉
T[m]← 1 〈〈build binary rep. of 2m〉〉
for i← 0 to m− 1

T[i]← 0

M ← Decimal(T[0 .. m]) 〈〈Recurse!〉〉
A← Decimal(X [m .. n− 1]) 〈〈Recurse!〉〉
B← Decimal(X [0 .. m− 1]) 〈〈Recurse!〉〉
return DecimalAdd(DecimalMultiply(A, M), B)

The subroutines DecimalAdd and DecimalMultiply do exactly what they say.
DecimalAdd runs in O(n) time, and because we are using Karatsuba’s algorithm,
DecimalMultiply runs in O(nlg 3) time.

The decimal strings A and B and M each have length Θ(n). Thus, the calls to
DecimalTwoToThe and DecimalMultiply both take O(nlg3) time, and the call to
DecimalAdd takes O(n) time. Thus, the running time of the overall algorithm satisfies
the recurrence

T (n) = 3T (n/2) +O(nlg3).

The recursion tree for T (n) is a ternary tree, with 3i nodes at recursion depth i. Each
node at depth i corresponds to a subproblem with input size n/2i; the non-recursive
time spent on that subproblem is O((n/2i)lg3) = O(nlg 3/3i).

3

CS/ECE 374 Lab 6b Solutions Fall 2025

nlg 3

nlg 3/3

nlg 3/9nlg 3/9 nlg 3/9

nlg 3/3

nlg 3/9nlg 3/9 nlg 3/9

nlg 3/3

nlg 3/9nlg 3/9 nlg 3/9

Thus, the total work at level i is 3i ·O(nlg 3/3i) = O(nlg3), so the level sums are all
equal! The depth of the recursion tree is log2 n = O(log n). We conclude that our
algorithm runs in O(nlg 3 logn) time. ■

4

CS/ECE 374 Lab 6b Solutions Fall 2025

3. Now suppose instead of converting 2n/2 to decimal by recursively calling the algorithm from
problem 2, we use the specialized algorithm for powers of 2 from problem 1. Now what is
the running time of the resulting algorithm (assuming we use Karatsuba’s multiplication
algorithm as before)?

Solution: Here is the modified algorithm in pseudocode.

Decimal(X [0 .. n− 1]):
if n< 100

use brute force
m← ⌈n/2⌉
M ← DecimalTwoToThe(m)
A← Decimal(X [m .. n− 1]) 〈〈recurse!〉〉
B← Decimal(X [0 .. m− 1]) 〈〈recurse!〉〉
return DecimalAdd(DecimalMultiply(A, M), B)

Because we already know that DecimalTwoToThe runs in O(nlg3) time, the running
time of this modified algorithm satisfies the recurrence

T (n) = 2T (n/2) +O(nlg3).

The recursion tree for T (n) is a binary tree, with 2inodes at recursion depth i. Each
recursive call at depth i converts an n/2i-bit binary number to decimal; the non-
recursive work at the corresponding node of the recursion tree is O((n/2i)lg 3) =
O(nlg3/3i).

nlg 3

nlg 3/3

nlg 3/9 nlg 3/9

nlg 3/3

nlg 3/9 nlg 3/9

Thus, the total work at depth i is 2i ·O(nlg3/3i) = O((2/3)inlg 3). The level sums form
a descending geometric series, which is dominated by its largest term, at level 0. We
conclude that our algorithm runs in O(nlg 3) time. ■

5

CS/ECE 374 Lab 6b Solutions Fall 2025

Harder problem to think about later:

4. In fact, it is possible to multiply two n-digit decimal numbers in O(n log n) time. Describe
an algorithm to compute the decimal representation of an arbitrary n-bit binary number in
O(n log2 n) time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication
algorithm instead of Karatsuba’s algorithm. Let T2(n) and T3(n) denote the running
times of DecimalTwoToThe and Decimal, respectively. We need to solve two
recurrences:

T2(n) = T2(n/2) +O(n log n)

T3(n) = 2T3(n/2) + T2(n) +O(n log n).

We can solve the first recurrence T2(n) = T2(n/2) +O(n log n) using the recursion
tree method, by conservatively bounding log factors. Each node at level i of the recur-
sion tree has value (n/2i) log(n/2i)≤ (n/2i) log n, so the levels define a descending
geometric series with an extra factor of log n. We conclude that T2(n)≤ O(n log n).

Now our recurrence for T3(n) simplifies to T3(n) = 2T3(n/2) + O(n log n), so
essentially the same recursion tree argument implies that T3(n)≤ O(n log2 n).

Alternatively, we can modify the Decimal algorithm to compute decimal represen-
tations of both x and 2n, as follows:

〈〈Compute decimal representations of both x (given in binary) and 2n〉〉
Decimal(X [0 .. n− 1]):
if n< 100

use brute force
m← ⌈n/2⌉
DA, MA← Decimal(X [m .. n− 1]) 〈〈Recurse!〉〉
DB, MB← Decimal(X [0 .. m− 1]) 〈〈Recurse!〉〉
〈〈DAand DB are decimal reps of a and b, where x = a · 2m + b〉〉
〈〈MAand MB are decimal reps of 2n−m and 2m〉〉
DX ← DecimalAdd(DecimalMultiply(DA, MB), DB) 〈〈O(n log n)〉〉
MX ← DecimalMultiply(MA, MB) 〈〈O(n log n)〉〉
return DX , MX

The running time of this modified algorithm satisfies the recurrence T (n) = 2T (n/2)+
O(n log n), which implies T (n) = O(n log2 n), as required. ■

6

