
CS/ECE 374 Lab 6 Solutions Fall 2025

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1]< A[2]< · · ·< A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

Solution (binary search): Supposewe define a second array∆[1 .. n] by setting
∆[i] = A[i]− i for all i. For every index i we have

∆[i] = A[i]− i ≤ (A[i + 1]− 1)− i = A[i + 1]− (i + 1) = ∆[i + 1],

so this new array is sorted in increasing order. Clearly, A[i] = i if and only if
∆[i] = 0. So we can find an index i such that A[i] = i by performing a binary
search in the array ∆. But we don’t actually need to explicitly compute ∆;
instead, whenever the binary search needs to access some value ∆[i], we can
compute A[i]− i on the fly!

Here are two formulations of the resulting algorithm, the first recursive
(passing the array A by reference with the top-level call FindMatch(A, 1, n)) and
the second iterative.

〈〈Return any index i such that lo≤ i ≤ hi and A[i] = i〉〉
FindMatch(A, lo,hi):
if lo> r

return None
mid← (lo+ hi)/2
if A[mid] =mid 〈〈∆[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈∆[mid]< 0〉〉

return FindMatch(A,mid+ 1,hi)
else 〈〈∆[mid]> 0〉〉

return FindMatch(A, lo,mid− 1)

FindMatch(A[1 .. n]):
lo← 1
hi← n
while lo≤ hi

mid← (lo+ hi)/2
if A[mid] =mid 〈〈∆[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈∆[mid]< 0〉〉

lo←mid+ 1
else 〈〈∆[mid]> 0〉〉

hi←mid− 1

return None

In both formulations, the algorithm is binary search, so it runs in O(log n)
time. ■

1

CS/ECE 374 Lab 6 Solutions Fall 2025

(b) Suppose we know in advance that A[1]> 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists. [Hint: This is really easy.]

Solution: The following algorithm solves this problem in O(1) time:
FindMatchPos(A[1 .. n]):
if A[1] = 1

return 1
else

return None

Again, the array∆[1 .. n] defined by setting∆[i] = A[i]− i is sorted in increasing
order. It follows that if A[1] > 1 (that is, ∆[1] > 0), then A[i] > i (that is,
∆[i]> 0) for every index i. A[1] cannot be less than 1. ■

2

CS/ECE 374 Lab 6 Solutions Fall 2025

2. Suppose we are given an array A[1 .. n] such that A[1]≥ A[2] and A[n−1]≤ A[n]. We say
that an element A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1].
For example, there are exactly six local minima in the following array:

9
▲
7 7 2

▲
1 3 7 5

▲
4 7

▲
3
▲
3 4 8

▲
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: Any array with the stated boundary conditions must contain at
least one local minimum. Why?]

Solution (binary search): The following algorithm solves this problem in O(log n)
time, Again, we are passing the array A by reference; the top-level function call is
LocalMin(A, 1, n).

〈〈Find a local minimum in A[lo ..hi]〉〉
〈〈Assumes A[lo]> A[lo+ 1] and A[hi]> A[hi− 1]〉〉
LocalMin(A, lo,hi) :

if hi− lo< 100
find minimum of A[lo ..hi] by brute force

mid← ⌊(hi+ lo)/2⌋
if A[mid]< A[mid+ 1]

return LocalMin(A, lo,mid+ 1)
else

return LocalMin(A,mid,hi)

If hi− lo < 100, then a brute-force search finds the minimum of A[lo ..hi] in O(1)
time. (There’s nothing special about 100 here; I think any integer larger than 2 will
work. On the other hand, optimizing that constant doesn’t improve the O() running
time, so why bother?)

Otherwise, if A[mid]< A[mid+1], the subarray A[lo ..mid+1] satisfies the precise
boundary conditions of the original problem, so the recursion fairy will find local
minimum inside that subarray.

Finally, if A[mid] ≥ A[mid + 1], the subarray A[mid ..hi] satisfies the precise
boundary conditions of the original problem, so the recursion fairy will find local
minimum inside that subarray.

The running time satisfies the recurrence T (n)≤ T (⌈n/2⌉+ 1) +O(1). Except for
the +1 and the ceiling in the recursive argument, which we can ignore, this is the
binary search recurrence, whose solution is T (n) = O(log n).

Alternatively, we can observe that ⌈n/2⌉+ 1< 2n/3 when n≥ 100, and therefore
T (n)≤ T (2n/3) +O(1), which implies T (n) = O(log3/2 n) = O(log n). ■

3

CS/ECE 374 Lab 6 Solutions Fall 2025

3. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union A∪ B. For example, given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18,20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

Solution (binary search): The following algorithm solves this problem in O(log n)
time:

Median(A[1 .. n], B[1 .. n]) :
if n< 10100

use brute force
else

m← ⌈n/2⌉
if A[m]> B[m]

return Median(A[1 .. m], B[n−m+ 1 .. n])
else

return Median(A[n−m+ 1 .. n], B[1 .. m])

There are three cases to consider.

• If n< 10100, then brute force works. (There’s obviously nothing special about
the constant 10100, but I can’t be bothered to optimize it.)

• Suppose A[m] > B[m]. (The following analysis is carefully written to handle
both even and odd n.)

A[m] is larger than all 2m− 1 ≥ n− 1 elements in A[1 .. m]∪ B[1 .. m− 1],
and therefore greater than or equal to the median of A∪ B. Thus, all n−m
elements in the subarray A[m+ 1 .. n] are larger than the median and can be
safely discarded.

Similarly, B[n−m] ≤ B[m] is smaller than all 2n− 2m+ 1 ≥ n elements
in A[m .. n] ∪ B[m+ 1 .. n], and therefore less than or equal to the median of
A∪ B. Thus, all n−m elements in the subarray B[1 .. n−m] are smaller than
the median and can be safely discarded.

We discard the same number of elements above and below the median, so
the median of the remaining elements is the median of the original A∪ B.

• The remaining case A[m]< B[m] is symmetric.

The running time satisfies the binary-search recurrence T (n) = O(1) + T (n/2). We
conclude that the algorithm runs in O(logn) time. ■

4

CS/ECE 374 Lab 6 Solutions Fall 2025

Harder problem to think about later:

4. Now suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] with distinct elements
and an integer k. Describe a fast algorithm to find the kth smallest element in the union
A∪ B. For example, given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18,20] B[1 .. 5] = [2, 5,7, 17,19] k = 6

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in O(logmin{k, m+ n− k}) =
O(log(m+ n)) time:

Select(A[1 .. m], B[1 .. n], k) :
if k < (m+ n)/2

return LowerMedian(A[1 .. k], B[1 .. k])
else

return UpperMedian(A[k− n .. m], B[k−m .. n])

This algorithm relies on two subroutines, both minor modifications of the algorithm
from problem 3.

• LowerMedian finds the ℓth smallest element of the union of two arrays of some
equal length ℓ, using the algorithm from problem 3, with one simple but crucial
tweak. If LowerMedian ever tries to access an entry A[i] with i > m or B[i]
with i > n, it uses the value∞ instead of instead of raising an array-index
exception, crashing with a segmentation fault, or reading garbage. This tweak is
necessary when either k > m or k > n.

The kth smallest element of A∪ B must lie in either A[1 .. k] or B[1 .. k],
and in fact must be the kth smallest element of A[1 .. k]∪ B[1 .. k]. Our call to
LowerMedian finds this element.

• Similarly, UpperMedian finds the ℓth largest element of two sorted arrays of
some equal length ℓ. If UpperMedian wants an entry A[i] or B[i] with i ≤ 0, it
uses the value −∞ instead of instead of crashing. This tweak is necessary when
either k ≤ n or k ≤ n. Otherwise, the algorithm is identical to the algorithm in
problem 3 (except for changes in the O(1)-time brute force base case).

The kth smallest element of A∪B is also the (m+n− k+1)th largest element
of A∪ B. Thus, it must be either one of the m + n − k + 1 largest elements
of A or one of the m+ n− k+ 1 largest elements of B; these are the subarrays
A[k−n .. m] and B[k−m .. n]. Moreover, the (m+n−k+1)th largest element of
A∪ B is also the (m+ n− k+1)th largest element of A[k− n .. m]∪ B[k−m .. n].
Our call to UpperMedian finds this element.

Our Select algorithm chooses whichever of these two options requires the smaller
subarrays. But in fact, we could use either option, regardless of the value of k, and
the algorithm would still be correct and would still run in O(log(m+ n)) time. ■

5

