CS/ECE 374 A Lab 5 Solutions Fall 2025

Let L be an arbitrary regular language over the alphabet 3 = {0, 1}. Prove that the following
languages are also regular.

1. SUPERSTRINGS(L) := {xyz | y € L and x,z € *}. This language contains all superstrings
of strings in L. For example:

SupersTRINGS({10010}) = {10010, 01010010, 1001011, 10010010010, --- }

[Hint: This is much easier than it looks.]

Solution: (0 + 1)*L(0+ 1)*. []

2. SuBsSTRINGS(L) :={y | x,y,2 € ¥* and xyz € L}. This language contains all substrings
of strings in L.

Solution: Let M = (Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
Without loss of generality, we assume that M satisfies the following conditions:

* Every state in Q is reachable in M from the start state s. (Otherwise, we can
remove any unreachable states.)

* Every state in Q can reach an accepting state, except for a single dump state
called fail. (Otherwise, we can merge all states in Q that can’t reach an accepting
state, and call the new merged state fail.)

We construct a new NFA with multiple start states M’ = (Q’,S’,A’, ') that accepts
SUBSTRINGS(L) as follows.

Q' =Q
s'=Q
A =Q\ {fail}

5'(g,a)={6(g,a)} forallgeQandacyx

M’ first guesses the state 5*(s, x) of M reached by the unknown prefix x, then reads
the input string y and passes it to M, and finally guesses a suffix z that leads M to
an accepting state. Because every state in M is reachable from s, guessing 6*(s, x) is
equivalent to guessing a state in Q. Similarly, because every state of M except fail can
reach an accepting state, we know that there is an appropriate suffix z for every state
except fail. [|

CS/ECE 374 A Lab 5 Solutions Fall 2025

Solution: Let M = (Q,s,A,6) be an arbitrary DFA that accepts the regular lan-
guage L. We construct a new NFA with e-transitions M’ = (Q’,s’,A’, 8") that accepts
SUBSTRINGS(L) as follows.

Q' = QU {before, during, after}
s’ = (s, before)
A = A x {after}

5'((q, before), e) = {(6(q, 0), before), (5(q, 1), before), (g, during)}
5'((q, before),0) = &
5'((q, before), 1) =@

5'((q,during), &) = {(q, after)}
&'((g,during),0) = {(6(q, 0), during)}
5'((q, during), 1) = {(8(g, 1), during)}
5'((q, after), &) = {(5(g, @), after), (&(q, 1), after)}
&'((q, after),0) =@
5'((q, after), 1) = @
M’ first guesses the symbols in x that were deleted before the input string y and

passes them to M, then passes the input string y to M, and finally guesses the symbols
in z that were deleted after the input string y and passes them to M. [|

CS/ECE 374 A Lab 5 Solutions Fall 2025

3. CycLE(L) :={xy | x,y € ¥* and yx € L}. This language contains all strings that can be
obtained by splitting a string in L into a prefix and a suffix and concatenating them in the
wrong order. For example:

CycLE({00K!, O0KOOK}) = {OOK!, OK!0, K!00, !00K, OOKOOK, OKOOKO, KOOKOO}

Solution: Let M = (Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
Without loss of generality, assume that M satisfies the following conditions:

* Every state in Q is reachable in M from the start state s. (Otherwise, we can
remove any unreachable states.)

* Every state in Q can reach an accepting state, except for a single dump state
called fail. (Otherwise, we can merge all states in Q that can’t reach an accepting
state, and call the new merged state fail.)

We construct a new NFA M’ = (Q’,S’,A’,5") with e-transitions and multiple
start states that accepts CycLE(L) as follows.

Q' = Q x Q x {suffix, prefix}

S"={(q,q,suffix) | g € Q \ {fail}}
A" ={(q,q,prefix) | g € Q \ {fail}}

5'((p, q, suffix),a) = {(p, 5(q, a), suffix)} forallp,geQandaex
5'((p, q, prefix),a) = {(p, 5(q, a), prefix)} forallp,geQanda€ X
5'((p, q, suffix), &) = {(p, s, prefix)} forallpeQandqeA
5'((p,q, suffix), &) = & forallpeQandgeQ\A

5'((p,q, prefix), e) =&

Intuitively, M’ reads the input string yx and simulates M running on the original
string xy. M’ guesses and remembers the state p = 5*(s, x), simulates M reading y
starting from p, guesses the boundary between y and x via e-transitions, and finally
simulates M reading x starting from s.

* State (p, g, suffix) means that our simulation of M started in state p, the simula-
tion is currently in state q, and M is reading the suffix x.

* State (p, g, prefix) means that our simulation of M started in state p, the simula-
tion is currently in state q, and M is reading the prefix y.

* Whenever M is in an accepting state g, we can guess that we are done reading
the suffix x, reset M to its start state, and start reading the prefix y.

* Finally, M” accepts if the simulation of M is in the same state after reading the
prefix y where is started reading the suffix x.

CS/ECE 374 A Lab 5 Solutions Fall 2025

Work on these later.

4. SUBSEQUENCES(L) is the set of all subsequences of strings in L. A subsequence of a string w
is the result of deleting zero or more symbols from w, leaving the remaining symbols in
order. For example:

SUBSEQUENCES({10010}) =
{e, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 101, 110, 0010, 1000, 1001,10010}

Solution: Let M = (Q,s,A,6) be an arbitrary DFA that accepts the regular lan-
guage L. We construct a new NFA with e-transitions M’ = (Q’,s’,A’, 5’) that accepts
SUBSEQUENCES(L) as follows.

Q=Q
S/=S
A=A

5'(q,0) ={6(q,0)}
5'(q,1)=1{6(q, 1)}
5'(q,€) =1{56(q,0), 6(g,1)}

Intuitively, M guesses which symbols have been deleted from its input string. [|

CS/ECE 374 A Lab 5 Solutions Fall 2025

5. FLipODDs(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every other bit
in w, starting with the first bit. For example:

Solution: Let M =(Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
We construct a new DFA M’ = (Q’,s’,A’, 5") that accepts FLIpPODDs(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE.
Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A’ = A x {TRUE, FALSE}
&'((g, FaLse), 0) = (6(q, 0), TRUE)
&'((g, TruE), @) = (5(g, 1), FALSE)
5'((q,FaLSE), 1) = (5(q, 1), TRUE)
6'((q, TrRUE), 1) = (6(q, 0), FALSE)

CS/ECE 374 A Lab 5 Solutions Fall 2025

6. UNFLIPODD1s(L) := {w € * | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111100101010) = 0000010100001000

Solution: Let M =(Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
We construct a new DFA M’ = (Q,s’,A’, ") that accepts UNFLIPODD1s(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and then
simulates M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A’ = A x {TRUE, FALSE}
&'((q, TruE), 0) = (5(q, 0), TRUE)
&'((g, FaLse), 0) = (6(q,), FALSE)
&'((g, TruE), 1) = (8(g, 0), FALSE)
5'((q,FaLsE), 1) = (6(q, 1), TRUE)

CS/ECE 374 A Lab 5 Solutions Fall 2025

7. FL1PODD1s(L) := {flipOddis(w) | w € L}, where the function flipOdd1s is defined in the
previous problem.

Solution: Let M = (Q,s,A, &) be an arbitrary DFA that accepts the regular language L.
We construct a new NFA M’ = (Q/,s’,A’, 5’) that accepts FLipODD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which @ bits to
restore to 1s, and simulates M on the restored string w. No string in FLipOpD1s(L)
has two 1s in a row, so if M’ ever sees 11, it must reject.

Each state (q,flip) of M’ indicates that M is in state ¢, and we need to flip some 0
bit before the next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)
A’ = A x {TRUE, FALSE}
&'((q,Faisg),0) = {(5(g, 0), FaLsE)}
5'((g, Truk), 0) = {(5(q, @), TrUE), (5(g,1), FaLsSE)}

5'((q,FaLsE), 1) = {(5(q, 1), TRUE)}
6'((q, TRUE), 1) =&

(The last transition indicates that we waited too long to flip a @ to a 1, so we should
kill the current execution thread.) |

CS/ECE 374 A Lab 5 Solutions Fall 2025

8. STUTTER(L) = {stutter(w) | w € L}, where the function stutter duplicates every symbol in
the input string:
ifw=e¢

€
stutter(w) := {

aa e stutter(x) if w=ax

Solution: Let M = (Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
We construct a DFA M’ = (Q’,s’,A’, 8") that accepts STUTTER(L) as follows:

Q' =Qx ({*}ux)U {fail} for some new symbol * ¢
s'=(s,?)
A'={(g,?")|qeA}
5'((g,"),a) = (g,a) foralgeQandaex
5'((q,a),b) = {(5.(q,a), i %fa =0 forallgeQanda,be ™
fail ifa#b
&' (fail, a) = fail forallae X

M’ reads the input string stutter(w) and simulates M running on input w.

* State (q,?) means M’ has read an even number of symbols of stutter(w), so M
should ignore the next symbol (if any).¢

* For any symbol a € %, state (g, a) means M’ has read an odd number of symbols
of stutter(w), and the last symbol read was a. If the next symbol is an a, then M
should transition normally; otherwise, the simulation should fail.

* The dump state fail means M’ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

“The symbol ? is called an interrobang.

CS/ECE 374 A Lab 5 Solutions Fall 2025

9. UNSTUTTER(L) = {w | stutter(w) € L}, where the function stutter is defined in the previous
problem.

Solution: Let M =(Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
We construct a DFA M’ = (Q’,s’,A’, 8") that accepts UNsTUTTER(L) as follows:

Q' =Q
s’'=s
A=A

5'(q,a) =6(8(q,a),a)

M’ reads its input string w and simulates M running on stutter(w). Each time M’
reads a symbol, it passes two copies of that symbol to the simulation of M. [|

