
CS/ECE 374 A Lab 5 Solutions Fall 2025

Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that the following
languages are also regular.

1. Superstrings(L) := {x yz | y ∈ L and x , z ∈ Σ∗}. This language contains all superstrings
of strings in L. For example:

Superstrings({10010}) =
�

10010, 01010010, 1001011, 10010010010, · · ·
	

[Hint: This is much easier than it looks.]

Solution: (0+ 1)∗L(0+ 1)∗. ■

2. Substrings(L) := {y | x , y, z ∈ Σ∗ and x yz ∈ L}. This language contains all substrings
of strings in L.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
Without loss of generality, we assume that M satisfies the following conditions:

• Every state in Q is reachable in M from the start state s. (Otherwise, we can
remove any unreachable states.)

• Every state in Q can reach an accepting state, except for a single dump state
called fail. (Otherwise, we can merge all states in Q that can’t reach an accepting
state, and call the new merged state fail.)

We construct a new NFA with multiple start states M ′ = (Q′,S′, A′,δ′) that accepts
Substrings(L) as follows.

Q′ =Q

S′ =Q

A′ =Q \ {fail}

δ′(q, a) =
�

δ(q, a)
	

for all q ∈Q and a ∈ Σ

M ′ first guesses the state δ∗(s, x) of M reached by the unknown prefix x , then reads
the input string y and passes it to M , and finally guesses a suffix z that leads M to
an accepting state. Because every state in M is reachable from s, guessing δ∗(s, x) is
equivalent to guessing a state in Q. Similarly, because every state of M except fail can
reach an accepting state, we know that there is an appropriate suffix z for every state
except fail. ■

1



CS/ECE 374 A Lab 5 Solutions Fall 2025

Solution: Let M = (Q, s,A,δ) be an arbitrary DFA that accepts the regular lan-
guage L. We construct a new NFA with ϵ-transitions M ′ = (Q′, s′,A′,δ′) that accepts
Substrings(L) as follows.

Q′ =Q ∪ {before, during, after}
s′ = (s, before)

A′ = A× {after}

δ′((q, before),ϵ) = {(δ(q,0), before), (δ(q,1), before), (q, during)}
δ′((q, before),0) =∅
δ′((q, before),1) =∅

δ′((q, during),ϵ) = {(q, after)}
δ′((q, during),0) = {(δ(q,0), during)}
δ′((q, during),1) = {(δ(q,1), during)}

δ′((q, after),ϵ) = {(δ(q,0), after), (δ(q,1), after)}
δ′((q, after),0) =∅
δ′((q, after),1) =∅

M ′ first guesses the symbols in x that were deleted before the input string y and
passes them to M , then passes the input string y to M , and finally guesses the symbols
in z that were deleted after the input string y and passes them to M . ■

2



CS/ECE 374 A Lab 5 Solutions Fall 2025

3. Cycle(L) := {x y | x , y ∈ Σ∗ and y x ∈ L}. This language contains all strings that can be
obtained by splitting a string in L into a prefix and a suffix and concatenating them in the
wrong order. For example:

Cycle({OOK!, OOKOOK}) =
�

OOK!, OK!O, K!OO, !OOK, OOKOOK, OKOOKO, KOOKOO
	

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
Without loss of generality, assume that M satisfies the following conditions:

• Every state in Q is reachable in M from the start state s. (Otherwise, we can
remove any unreachable states.)

• Every state in Q can reach an accepting state, except for a single dump state
called fail. (Otherwise, we can merge all states in Q that can’t reach an accepting
state, and call the new merged state fail.)

We construct a new NFA M ′ = (Q′,S′, A′,δ′) with ϵ-transitions and multiple
start states that accepts Cycle(L) as follows.

Q′ =Q×Q× {suffix, prefix}
S′ = {(q, q, suffix) | q ∈Q \ {fail}}
A′ = {(q, q, prefix) | q ∈Q \ {fail}}

δ′((p, q, suffix), a) = {(p,δ(q, a), suffix)} for all p, q ∈Q and a ∈ Σ
δ′((p, q, prefix), a) = {(p,δ(q, a), prefix)} for all p,q ∈Q and a ∈ Σ

δ′((p,q, suffix),ϵ) = {(p, s, prefix)} for all p ∈Q and q ∈ A

δ′((p,q, suffix),ϵ) =∅ for all p ∈Q and q ∈Q \ A

δ′((p,q, prefix),ϵ) =∅

Intuitively, M ′ reads the input string y x and simulates M running on the original
string x y . M ′ guesses and remembers the state p = δ∗(s, x), simulates M reading y
starting from p, guesses the boundary between y and x via ϵ-transitions, and finally
simulates M reading x starting from s.

• State (p,q, suffix) means that our simulation of M started in state p, the simula-
tion is currently in state q, and M is reading the suffix x .

• State (p,q, prefix) means that our simulation of M started in state p, the simula-
tion is currently in state q, and M is reading the prefix y .

• Whenever M is in an accepting state q, we can guess that we are done reading
the suffix x , reset M to its start state, and start reading the prefix y .

• Finally, M ′ accepts if the simulation of M is in the same state after reading the
prefix y where is started reading the suffix x .

■

3



CS/ECE 374 A Lab 5 Solutions Fall 2025

Work on these later.

4. Subsequences(L) is the set of all subsequences of strings in L. A subsequence of a string w
is the result of deleting zero or more symbols from w, leaving the remaining symbols in
order. For example:

Subsequences({10010}) =
�

ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 101, 110, 0010, 1000, 1001,10010
	

Solution: Let M = (Q, s,A,δ) be an arbitrary DFA that accepts the regular lan-
guage L. We construct a new NFA with ϵ-transitions M ′ = (Q′, s′,A′,δ′) that accepts
Subsequences(L) as follows.

Q′ =Q

s′ = s

A′ = A

δ′(q,0) = {δ(q,0)}
δ′(q,1) = {δ(q,1)}
δ′(q,ϵ) = {δ(q,0), δ(q,1)}

Intuitively, M ′ guesses which symbols have been deleted from its input string. ■

4



CS/ECE 374 A Lab 5 Solutions Fall 2025

5. FlipOdds(L) := {flipOdds(w) | w ∈ L}, where the function flipOdds inverts every other bit
in w, starting with the first bit. For example:

flipOdds(0000111101010100) = 1010010111111110

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a new DFA M ′ = (Q′, s′,A′,δ′) that accepts FlipOdds(L) as follows.

Intuitively, M ′ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next input bit if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)

A′ = A× {True,False}

δ′((q,False),0) =
�

δ(q,0), True
�

δ′((q,True),0) =
�

δ(q,1), False
�

δ′((q,False),1) =
�

δ(q,1), True
�

δ′((q,True),1) =
�

δ(q,0), False
�

■

5



CS/ECE 374 A Lab 5 Solutions Fall 2025

6. UnflipOdd1s(L) := {w ∈ Σ∗ | flipOdd1s(w) ∈ L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111100101010) = 0000010100001000

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a new DFA M ′ = (Q′, s′, A′,δ′) that accepts UnflipOdd1s(L) as follows.

Intuitively, M ′ receives some string w as input, flips every other 1 bit, and then
simulates M on the transformed string.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next 1 bit if and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)

A′ = A× {True,False}

δ′((q,True),0) =
�

δ(q,0), True
�

δ′((q,False),0) =
�

δ(q,0), False
�

δ′((q,True),1) =
�

δ(q,0), False
�

δ′((q,False),1) =
�

δ(q,1), True
�

■

6



CS/ECE 374 A Lab 5 Solutions Fall 2025

7. FlipOdd1s(L) := {flipOdd1s(w) | w ∈ L}, where the function flipOdd1s is defined in the
previous problem.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a new NFA M ′ = (Q′, s′, A′,δ′) that accepts FlipOdd1s(L) as follows.

Intuitively, M ′ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FlipOdd1s(L)
has two 1s in a row, so if M ′ ever sees 11, it must reject.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip some 0
bit before the next 1 bit if and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)

A′ = A× {True,False}

δ′((q,False),0) =
��

δ(q,0), False
�	

δ′((q,True),0) =
��

δ(q,0), True
�

,
�

δ(q,1), False
�	

δ′((q,False),1) =
��

δ(q,1), True
�	

δ′((q,True),1) =∅

(The last transition indicates that we waited too long to flip a 0 to a 1, so we should
kill the current execution thread.) ■

7



CS/ECE 374 A Lab 5 Solutions Fall 2025

8. Stutter(L) = {stutter(w) | w ∈ L}, where the function stutter duplicates every symbol in
the input string:

stutter(w) :=

(

ϵ if w= ϵ

aa • stutter(x) if w= ax

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a DFA M ′ = (Q′, s′, A′,δ′) that accepts Stutter(L) as follows:

Q′ =Q× ({‽} ∪Σ)∪ {fail} for some new symbol ‽ ̸∈ Σ
s′ = (s,‽)

A′ = {(q,‽) | q ∈ A}

δ′((q,‽), a) = (q, a) for all q ∈Q and a ∈ Σ

δ′((q, a), b) =

¨

(δ(q, a),‽) if a = b

fail if a ̸= b
for all q ∈Q and a, b ∈ Σ

δ′(fail, a) = fail for all a ∈ Σ

M ′ reads the input string stutter(w) and simulates M running on input w.

• State (q,‽) means M ′ has read an even number of symbols of stutter(w), so M
should ignore the next symbol (if any).a

• For any symbol a ∈ Σ, state (q, a) means M ′ has read an odd number of symbols
of stutter(w), and the last symbol read was a. If the next symbol is an a, then M
should transition normally; otherwise, the simulation should fail.

• The dump state fail means M ′ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

■
aThe symbol ‽ is called an interrobang.

8



CS/ECE 374 A Lab 5 Solutions Fall 2025

9. Unstutter(L) = {w | stutter(w) ∈ L}, where the function stutter is defined in the previous
problem.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a DFA M ′ = (Q′, s′, A′,δ′) that accepts Unstutter(L) as follows:

Q′ =Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a)

M ′ reads its input string w and simulates M running on stutter(w). Each time M ′

reads a symbol, it passes two copies of that symbol to the simulation of M . ■

9


