
CS/ECE 374 A Lab 4b Solutions Fall 2025

Give context-free grammars for each of the following languages.

1. All palindromes in Σ∗

Solution: S→ ϵ | 0 | 1 | 0S0 | 1S1

This is just a recursive definition of “palindrome”. ■

2. All palindromes in Σ∗ that contain an even number of 1s

Solution: S→ ϵ | 0 | 0S0 | 1S1

A palindrome contains an even number of 1s if and only if it has even length, or it
has odd length and the middle symbol is not 1. ■

3. All palindromes in Σ∗ that end with 1

Solution:

S→ 1 | 1A1 Palindromes that start and end with 1

A→ ϵ | 0 | 1 | 0A0 | 1A1 All palindromes ■

4. All palindromes in Σ∗ whose length is divisible by 3

Solution: Case analysis for the win!

S→ 0A0 | 1A1 | ϵ palindromes, length mod 3= 0

A→ 0B0 | 1B1 | 0 | 1 palindromes, length mod 3= 1

B→ 0S0 | 1S1 palindromes, length mod 3= 2 ■

Solution: Brute force for the win!

S→ ϵ | 000 | 010 | 101 | 111
| 000S000 | 001S100 | 010S010 | 011S110

| 100S001 | 101S101 | 110S011 | 111S111 ■

5. All palindromes in Σ∗ that do not contain the substring 00

Solution:

S→ ϵ | 1 | 0 | 0A0 | 1S1 Palindromes with no 00

A→ 1 | 1S1 Palindromes with no 00 that start and end with 1 ■
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Harder problems to work on later:

6. {02n1n | n≥ 0}

Solution: S→ ϵ | 00S1 ■

7. {0m1n | m ̸= 2n} [Hint: If m ̸= 2n, then either m< 2n or m> 2n.]

Solution: Intuitively, we can parse any string w ∈ L as follows. First, remove the first
2k 0s and the last k 1s, for the largest possible value of k. The remaining string cannot
be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by
any number of 1s.

S→ 00S1 | A | B | C {0m1n | m ̸= 2n}
A→ 0 | 0A 0+

B→ 1 | 1B 1+

C → 0 | 0B 01∗ ■

Solution: To simplify notation, let ∆(w) = #(0, w)−2#(1, w). Our solution uses the
following case analysis. Let w be an arbitrary string in this language.

• Because ∆(w) ̸= 0, either ∆(w)> 0 or ∆(w)< 0.
• If ∆(w) > 0, then w = 0iz for some integer i > 0 and some suffix z with
∆(z) = 0.

• If ∆(w)< 0, then w= x1 j for some integer j > 0 and some prefix x with either
∆(x) = 0 or ∆(x) = 1.

• Substrings with ∆= 0 are generated by the previous grammar; we need only a
small tweak to generate substrings with ∆= 1.

We encode this case analysis as a CFG as follows. The nonterminals M and L generate
all strings where the number of 0s is More or Less than twice the number of 1s,
respectively. The last nonterminal generates strings with ∆= 0 or ∆= 1.

S→ M | L {0m1n | m ̸= 2n} (∆ ̸= 0)

M → 0M | 0E {0m1n | m> 2n} (∆> 0)

L→ L1 | E1 {0m1n | m< 2n} (∆< 0)

E→ ϵ | 0 | 00E1 {0m1n | m= 2n or 2n+ 1} ■
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Solution: Here is another way to encode the logic of the previous solution as a CFG.
We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the
rest of the string as “balanced” as possible. We also generate strings with ∆= 1 using
a separate non-terminal.

S→ AE | EB | FB {0m1n | m ̸= 2n}
A→ 0 | 0A 0+ = {0i | i ≥ 1}
B→ 1 | 1B 1+ = {1 j | j ≥ 1}
E→ ϵ | 00E1 {0m1n | m= 2n}
F → 0E {0m1n | m= 2n+ 1} ■

Solution: Here is yet another way to encode the logic of the second solution as a
CFG. We separately generate all strings of the form 0odd1∗, so that we don’t have to
worry about the case ∆= 1 separately.

S→ D | M | L {0m1n | m ̸= 2n}
D→ 0 | 00D | D1 {0m1n | m is odd}
M → 00M | 00E {0m1n | m> 2n and m is even}
L→ L1 | E1 {0m1n | m< 2n and m is even}
E→ ϵ | 00E1 {0m1n | m= 2n} ■

8. {0,1}∗ \ {02n1n | n≥ 0}

Solution: This language is the union of the previous language and the complement
of 0∗1∗, which is (0+ 1)∗10(0+ 1)∗.

S→ T | X {0,1}∗ \ {02n1n | n≥ 0}

T → 00T1 | A | B | C {0m1n | m ̸= 2n}
A→ 0 | 0A 0+

B→ 1 | 1B 1+

C → 0 | 0B 01∗

X → Z10Z (0+ 1)∗10(0+ 1)∗

Z → ϵ | 0Z | 1Z (0+ 1)∗ ■
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9.
�

w ∈ {0,1}∗
�

� #(0, w) = 2 ·#(1, w)
	

— Binary strings where the number of 0s is exactly
twice the number of 1s.

Solution: S→ ϵ | SS | 00S1 | 1S00 | 0S1S0.
Let L denote the language generated by this grammar. For any string w, let

∆(w) = #(0, w)− 2 ·#(1, w). We claim that L contains every binary string w such
that ∆(w) = 0.

Let w be an arbitrary binary string such that ∆(w) = 0. Assume that L contains
every string x shorter than w such that ∆(x) = 0. There are five cases to consider.

• If w= ϵ, the grammar immediately implies w ∈ L.
• Suppose ∆(x) = 0 for some non-empty proper prefix x of w. Then we can write

w = x y, where ∆(y) = ∆(w)−∆(x) = 0. The induction hypothesis implies
that x ∈ L and y ∈ L. It follows that w= x y ∈ L.

• Suppose∆(x)> 0 for every non-empty proper prefix x of w. In this case, w must
start with 00 and end with 1. Thus, w = 00x1 for some string x . We easily
observe that ∆(x) = 0. So the inductive hypothesis implies x ∈ L. It follows
that w= 00x1 ∈ L.

• Suppose∆(x)< 0 for every non-empty proper prefix x of w. In this case, w must
start with 1 and end with 00. Let 1x be the shortest non-empty prefix with
∆(1x) = 1. Then ∆(x) = 0, and therefore x ∈ L by the inductive hypothesis. It
follows that w= 1x00 ∈ L.

• Finally, suppose w starts with 0 but ∆(x) < 0 for some proper prefix x . Let x
be the shortest non-empty proper prefix of w with ∆(x)< 0. Then x = 0y1 for
some substring y with ∆(y) = 0. Thus, we can write w= 0y1z, and we easily
observe that ∆(z) = 0. The induction hypothesis implies that y ∈ L and z ∈ L.
It follows that w= 0y1z0 ∈ L . ■
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10. {0,1}∗ \ {ww | w ∈ {0,1}∗}.

Solution: All strings of odd length are in L.
Let w be any even-length string in L, and let m = |w|/2. For some index i ≤ m,

we have wi ̸= wm+i. Thus, w can be written as either x1y0z or x0y1z for some
substrings x , y, z such that |x | = i − 1, |y| = m− 1, and |z| = m− i. We can further
decompose y into a prefix of length i − 1 and a suffix of length m− i. So we can
write any even-length string w ∈ L as either x1x ′z′0z or x0x ′z′1z, for some strings
x , x ′, z, z′ with |x |= |x ′|= i − 1 and |z|= |z′|= m− i.

Said more simply, we can divide w into two odd-length strings, one with a 0 at its
center, and the other with a 1 at its center.

S→ AB | BA | A | B strings not of the form ww

A→ 0 | ΣAΣ odd-length strings with 0 at center
B→ 1 | ΣBΣ odd-length strings with 1 at center
Σ→ 0 | 1 single character ■
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