CS/ECE 374 A Lab 4b Solutions

Fall 2025

Give context-free grammars for each of the following languages.

1. All palindromes in %*

Solution: S—¢|0|1]0S0|1S1

This is just a recursive definition of “palindrome”.

2. All palindromes in * that contain an even number of 1s

Solution: S —¢|0| 050|181
A palindrome contains an even number of 1s if and only if it has even length, or it

has odd length and the middle symbol is not 1. |
3. All palindromes in %* that end with 1
Solution:
S —1]1A1 Palindromes that start and end with 1
A—¢e|0]|1]|0A0]| 1A1 All palindromes -
4. All palindromes in ¥* whose length is divisible by 3
Solution: Case analysis for the win!
S — 0A0 | 1A1 | ¢ palindromes, length mod 3 =0
A—0B0O|1B1|0]|1 palindromes, length mod 3 =1
B —0S0| 181 palindromes, length mod 3 =2 -
Solution: Brute force for the win!
S—¢e|000|010]|101]111
| 000S000 | 0015100 | 0105010 | 0115110
| 1005001 | 1015101 | 1105011] 1115111 =

5. All palindromes in 2* that do not contain the substring 00

Solution:

S—e|1]0]|0A0] 181 Palindromes with no 00

A—1]181 Palindromes with no 00 that start and end with 1

CS/ECE 374 A Lab 4b Solutions Fall 2025

Harder problems to work on later:

6. {0*"1" | n > 0}

Solution: S — ¢ | 00S1 [|

7. {0™1" | m # 2n} [Hint: If m # 2n, then either m < 2n or m > 2n.]

Solution: Intuitively, we can parse any string w € L as follows. First, remove the first
2k 0s and the last k 1s, for the largest possible value of k. The remaining string cannot
be empty, and it must consist entirely of @s, entirely of 1s, or a single 0 followed by
any number of 1s.

S—00S1|A|B|C {0™1™ | m # 2n}
A—0]|0A ot
B—1|1B 1t
C—0|0B 01*

Solution: To simplify notation, let A(w) = #(0, w) —2#(1,w). Our solution uses the
following case analysis. Let w be an arbitrary string in this language.

¢ Because A(w) # 0, either A(w) > 0 or A(w) <O.

o If A(w) > 0, then w = 0'z for some integer i > 0 and some suffix z with
A(z) =0.

 If A(w) <0, then w = x1/ for some integer j > 0 and some prefix x with either
A(x)=0or A(x)=1.

e Substrings with A = 0 are generated by the previous grammar; we need only a
small tweak to generate substrings with A = 1.

We encode this case analysis as a CFG as follows. The nonterminals M and L generate
all strings where the number of 0s is More or Less than twice the number of s,
respectively. The last nonterminal generates strings with A=0or A =1.

S—>M|L {o™M™ | m#2n} (A#0)
M — 0M | OE {o™™ | m>2n} (A>0)
L— L1]|E1 {o™" | m<2n} (A<O0)
E—¢e|0]|00E1 {o™" | m=2nor2n+1} -

CS/ECE 374 A Lab 4b Solutions Fall 2025

Solution: Here is another way to encode the logic of the previous solution as a CFG.
We either identify a non-empty prefix of @s or a non-empty prefix of 1s, so that the
rest of the string as “balanced” as possible. We also generate strings with A = 1 using
a separate non-terminal.

S —AE |EB | FB {0™1™ | m # 2n}
A—0|0A ot ={o'|i>1}
B—1]|1B 1m={7]j=1}
E — ¢ | 00E1 {0™1" | m = 2n}
F — 0E {o™" | m=2n+1} -

Solution: Here is yet another way to encode the logic of the second solution as a
CFG. We separately generate all strings of the form 0°941*, so that we don’t have to
worry about the case A = 1 separately.

S—>D|M|L {o™1" | m # 2n}
D — 0| 0eD | D1 {0™1" | m is odd}
M — 00M | 00E {0™1" | m > 2n and m is even}
L—>L1|E1 {0™1™| m < 2n and m is even}
E — ¢ | 00E1 {0™" | m = 2n} .

8. {0,1}*\ {0*"1" | n > 0}

Solution: This language is the union of the previous language and the complement
of 0*1*, which is (0 + 1)*10(0 + 1)*.

S—>TI|X {0,1}*\ {0*"1" | n> 0}

T —00T1|A|B|C {0™1" | m # 2n}

A—0]|0A ot

B—1]|1B 1t

C—0|0B 01*

X - Z10Z (0+1)10(0 + 1)*

Z—>el|0Z|1Z (0+1)* -

CS/ECE 374 A Lab 4b Solutions Fall 2025

9. {w e{o,1}* | #(o,w)=2- #(1,w)} — Binary strings where the number of 0s is exactly
twice the number of 1s.

Solution: S — ¢|SS|00S1|1S00|0S1S0.

Let L denote the language generated by this grammar. For any string w, let
A(w) = #(0,w) —2- #(1,w). We claim that L contains every binary string w such
that A(w) = 0.

Let w be an arbitrary binary string such that A(w) = 0. Assume that L contains
every string x shorter than w such that A(x) = 0. There are five cases to consider.

e If w=¢, the grammar immediately implies w € L.

e Suppose A(x) = 0 for some non-empty proper prefix x of w. Then we can write
w = xy, where A(y) = A(w)— A(x) = 0. The induction hypothesis implies
that x € L and y € L. It follows that w = xy € L.

e Suppose A(x) > 0 for every non-empty proper prefix x of w. In this case, w must
start with 00 and end with 1. Thus, w = 00x1 for some string x. We easily
observe that A(x) = 0. So the inductive hypothesis implies x € L. It follows
that w = 00x1 € L.

e Suppose A(x) < 0 for every non-empty proper prefix x of w. In this case, w must
start with 1 and end with 00. Let 1x be the shortest non-empty prefix with
A(1x) =1. Then A(x) =0, and therefore x € L by the inductive hypothesis. It
follows that w = 1x00 € L.

* Finally, suppose w starts with @ but A(x) < 0 for some proper prefix x. Let x
be the shortest non-empty proper prefix of w with A(x) < 0. Then x =0y1 for
some substring y with A(y) = 0. Thus, we can write w = 0y 1z, and we easily
observe that A(z) = 0. The induction hypothesis implies that y € L and z € L.
It follows that w = 0y1z0 € L .]

CS/ECE 374 A Lab 4b Solutions Fall 2025

10. {0,1}*\ {ww| we{0,1}*}.

Solution: All strings of odd length are in L.

Let w be any even-length string in L, and let m = |w|/2. For some index i < m,
we have w; # w,,,;. Thus, w can be written as either x1y0z or x0y1z for some
substrings x, y,z such that |[x| =i—1, |y| =m—1, and |z| = m —i. We can further
decompose y into a prefix of length i — 1 and a suffix of length m —i. So we can
write any even-length string w € L as either x1x'z’0z or x0x’z"1z, for some strings
x,x’,z,2' with |[x| =|x/|=i—1and |z] = |z/| = m —i.

Said more simply, we can divide w into two odd-length strings, one with a 0 at its
center, and the other with a 1 at its center.

S—AB|BA|A|B strings not of the form ww

A— 0| A% odd-length strings with @ at center
B—1|XBX odd-length strings with 1 at center

>—-0|1 single character -

