Give context-free grammars for each of the following languages.

1. All palindromes in Σ^*

```
Solution: S \to \varepsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1
This is just a recursive definition of "palindrome".
```

2. All palindromes in Σ^* that contain an even number of 1s

```
Solution: S \to \varepsilon \mid 0 \mid 0S0 \mid 1S1
A palindrome contains an even number of 1s if and only if it has even length, or it has odd length and the middle symbol is not 1.
```

3. All palindromes in Σ^* that end with 1

```
Solution: S \to 1 \mid 1A1 \qquad \text{Palindromes that start and end with 1} \\ A \to \varepsilon \mid 0 \mid 1 \mid 0A0 \mid 1A1 \qquad \qquad \text{All palindromes}
```

4. All palindromes in Σ^* whose length is divisible by 3

```
Solution: Case analysis for the win! S \to 0A0 \mid 1A1 \mid \varepsilon \qquad \text{palindromes, length mod } 3 = 0 A \to 0B0 \mid 1B1 \mid 0 \mid 1 \qquad \text{palindromes, length mod } 3 = 1 B \to 0S0 \mid 1S1 \qquad \text{palindromes, length mod } 3 = 2
```

```
Solution: Brute force for the win! S \to \varepsilon \mid 000 \mid 010 \mid 101 \mid 111 \\ \mid 000S000 \mid 001S100 \mid 010S010 \mid 011S110 \\ \mid 100S001 \mid 101S101 \mid 110S011 \mid 111S111
```

5. All palindromes in Σ^* that do not contain the substring 00

```
Solution: S \rightarrow \varepsilon \mid 1 \mid 0 \mid 0A0 \mid 1S1 Palindromes with no 00 A \rightarrow 1 \mid 1S1 Palindromes with no 00 that start and end with 1
```

Harder problems to work on later:

6. $\{0^{2n}1^n \mid n \ge 0\}$

Solution: $S \to \varepsilon \mid 00S1$

7. $\{0^m 1^n \mid m \neq 2n\}$ [Hint: If $m \neq 2n$, then either m < 2n or m > 2n.]

Solution: Intuitively, we can parse any string $w \in L$ as follows. First, remove the first 2k 0s and the last k 1s, for the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by any number of 1s.

$$S \to 00S1 | A | B | C$$
 $\{0^m 1^n | m \neq 2n\}$
 $A \to 0 | 0A$ 0^+
 $B \to 1 | 1B$ 1^+
 $C \to 0 | 0B$ 01^*

Solution: To simplify notation, let $\Delta(w) = \#(0, w) - 2\#(1, w)$. Our solution uses the following case analysis. Let w be an arbitrary string in this language.

- Because $\Delta(w) \neq 0$, either $\Delta(w) > 0$ or $\Delta(w) < 0$.
- If $\Delta(w) > 0$, then $w = 0^i z$ for some integer i > 0 and some suffix z with $\Delta(z) = 0$.
- If $\Delta(w) < 0$, then $w = x1^j$ for some integer j > 0 and some prefix x with either $\Delta(x) = 0$ or $\Delta(x) = 1$.
- Substrings with $\Delta = 0$ are generated by the previous grammar; we need only a small tweak to generate substrings with $\Delta = 1$.

We encode this case analysis as a CFG as follows. The nonterminals M and L generate all strings where the number of 0s is M ore or Less than twice the number of 1s, respectively. The last nonterminal generates strings with $\Delta = 0$ or $\Delta = 1$.

$$S \to M \mid L$$
 $\{0^m 1^n \mid m \neq 2n\} \quad (\Delta \neq 0)$
 $M \to 0M \mid 0E$ $\{0^m 1^n \mid m > 2n\} \quad (\Delta > 0)$
 $L \to L1 \mid E1$ $\{0^m 1^n \mid m < 2n\} \quad (\Delta < 0)$
 $E \to \varepsilon \mid 0 \mid 00E1$ $\{0^m 1^n \mid m = 2n \text{ or } 2n + 1\}$

Solution: Here is another way to encode the logic of the previous solution as a CFG. We either identify a non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string as "balanced" as possible. We also generate strings with $\Delta=1$ using a separate non-terminal.

$$S \to AE \mid EB \mid FB$$
 $\{0^{m}1^{n} \mid m \neq 2n\}$
 $A \to 0 \mid 0A$ $0^{+} = \{0^{i} \mid i \geq 1\}$
 $B \to 1 \mid 1B$ $1^{+} = \{1^{j} \mid j \geq 1\}$
 $E \to \varepsilon \mid 00E1$ $\{0^{m}1^{n} \mid m = 2n\}$
 $F \to 0E$ $\{0^{m}1^{n} \mid m = 2n + 1\}$

Solution: Here is yet another way to encode the logic of the second solution as a CFG. We separately generate all strings of the form $0^{\text{odd}}1^*$, so that we don't have to worry about the case $\Delta=1$ separately.

$$S \to D \mid M \mid L$$
 {0^m1ⁿ | m \neq 2n}
 $D \to 0 \mid 00D \mid D1$ {0^m1ⁿ | m is odd}
 $M \to 00M \mid 00E$ {0^m1ⁿ | m > 2n and m is even}
 $L \to L1 \mid E1$ {0^m1ⁿ | m < 2n and m is even}
 $E \to \varepsilon \mid 00E1$ {0^m1ⁿ | m = 2n}

8. $\{0,1\}^* \setminus \{0^{2n}1^n \mid n \ge 0\}$

Solution: This language is the union of the previous language and the complement of 0^*1^* , which is $(0+1)^*10(0+1)^*$.

$$S \to T \mid X$$
 {0,1}*\{0^{2n}1^n \mid n \ge 0}
 $T \to 00T1 \mid A \mid B \mid C$ {0^m1ⁿ \| m \neq 2n}
 $A \to 0 \mid 0A$ 0⁺
 $B \to 1 \mid 1B$ 1⁺
 $C \to 0 \mid 0B$ 01*
 $X \to Z10Z$ (0+1)*10(0+1)*
 $Z \to \varepsilon \mid 0Z \mid 1Z$ (0+1)*

9. $\{w \in \{0,1\}^* \mid \#(0,w) = 2 \cdot \#(1,w)\}$ — Binary strings where the number of 0s is exactly twice the number of 1s.

Solution: $S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 1S00 \mid 0S1S0$.

Let *L* denote the language generated by this grammar. For any string *w*, let $\Delta(w) = \#(0, w) - 2 \cdot \#(1, w)$. We claim that *L* contains every binary string *w* such that $\Delta(w) = 0$.

Let w be an arbitrary binary string such that $\Delta(w) = 0$. Assume that L contains every string x shorter than w such that $\Delta(x) = 0$. There are five cases to consider.

- If $w = \varepsilon$, the grammar immediately implies $w \in L$.
- Suppose $\Delta(x) = 0$ for some non-empty proper prefix x of w. Then we can write w = xy, where $\Delta(y) = \Delta(w) \Delta(x) = 0$. The induction hypothesis implies that $x \in L$ and $y \in L$. It follows that $w = xy \in L$.
- Suppose $\Delta(x) > 0$ for every non-empty proper prefix x of w. In this case, w must start with 00 and end with 1. Thus, w = 00x1 for some string x. We easily observe that $\Delta(x) = 0$. So the inductive hypothesis implies $x \in L$. It follows that $w = 00x1 \in L$.
- Suppose $\Delta(x) < 0$ for every non-empty proper prefix x of w. In this case, w must start with 1 and end with 00. Let 1x be the shortest non-empty prefix with $\Delta(1x) = 1$. Then $\Delta(x) = 0$, and therefore $x \in L$ by the inductive hypothesis. It follows that $w = 1x00 \in L$.
- Finally, suppose w starts with 0 but $\Delta(x) < 0$ for some proper prefix x. Let x be the *shortest* non-empty proper prefix of w with $\Delta(x) < 0$. Then x = 0y1 for some substring y with $\Delta(y) = 0$. Thus, we can write w = 0y1z, and we easily observe that $\Delta(z) = 0$. The induction hypothesis implies that $y \in L$ and $z \in L$. It follows that $w = 0y1z0 \in L$.

10. $\{0,1\}^* \setminus \{ww \mid w \in \{0,1\}^*\}.$

Solution: All strings of odd length are in *L*.

Let w be any even-length string in L, and let m=|w|/2. For some index $i \leq m$, we have $w_i \neq w_{m+i}$. Thus, w can be written as either x1y0z or x0y1z for some substrings x,y,z such that |x|=i-1, |y|=m-1, and |z|=m-i. We can further decompose y into a prefix of length i-1 and a suffix of length m-i. So we can write any even-length string $w \in L$ as either x1x'z'0z or x0x'z'1z, for some strings x,x',z,z' with |x|=|x'|=i-1 and |z|=|z'|=m-i.

Said more simply, we can divide w into two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

$S \rightarrow AB \mid BA \mid A \mid B$	strings not of the form ww
$A \rightarrow 0 \mid \Sigma A \Sigma$	odd-length strings with ${\color{red}0}$ at center
$B \rightarrow 1 \mid \Sigma B \Sigma$	odd-length strings with 1 at center
$\Sigma \rightarrow 0 \mid 1$	single character