CS/ECE 374 A Lab 4a Solutions Fall 2025

Let L be an arbitrary regular language over the alphabet 3 = {0, 1}. Prove that the following
languages are also regular. For each language, we provide a higholevel intuitive sketch of the
proof; your task is to fill in the remaining technical details. (You probably won'’t get to all of these
during the lab session.)

Important note about notation: If a language L is described in set-builder notation as
{stuff | condition}, then every finite-state machine that accepts L takes stuff as input, and checks
whether stuff satisfies the stated condition.

In particular, every finite-state machine that accepts the language {foo(w) | bar(w) € L} takes
an arbitrary string x as input, guesses a string w such that x = foo(w), and determines whether
the guessed string w satisfies the condition bar(w) € L.

1. Let INSERTANY1S(L) is the set of all strings that can be obtained from strings in L by
inserting any number of 1s anywhere in the string. For example:

INSErRTANYTs({e, 1, 00}) ={e, 1, 11, 111,..., 00, 100, 0111110,1110111111101111,...}

Prove that the language INSERTANY1s(L) is regular.

Solution: Let M =(Q,s,A, 6) be an arbitrary DFA that accepts the regular language L.
We want to build a machine M’ that accepts INSERTANY1s(L).

We construct a new NFA with e-transitions M’ = (Q’,s’,A’,5’) that accepts
INSERTANY1s(L) as follows. The input to M’ is the result of inserting 1s into some
string w, and M’ needs to determine whether that string w is in L. Intuitively, M’
guesses the original string w, by nondeterministically guessing which 1s were inserted,
and simulates M running on that original string w.

M’ has the same states and start state and accepting states as M, but it has a
different transition function.

Q'=Q
s'=s
A=A

5'(q,0)={ 5(q,0) }

5’(q,1)={ q, 6(q,1)

[ ——

s@e)={ |}

Yes, the last box is empty. Each time M’ reads a 1, M’ guesses whether to ignore that 1
(because it was inserted) or to pass that 1 to M (because it was a symbol in w). In
hindsight, we don’t need any e-transitions, so we can safely delete the final transition
6'(q,€) = @ and the phrase “with e-transitions” at the beginning. [ ]
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2. Let DELETEANY1s(L) is the set of all strings that can be obtained from strings in L by
deleting any number of 1s anywhere in the string. For example:

DELETEANYTs({g, 00, 1101}) = {£,0,00,01,10,101,110,1101}

Prove that the language DELETEANY1S(L) is regular.

Solution: Let M = (Q,s,A, &) be an arbitrary DFA that accepts the regular language L.

We construct a new NFA with e-transitions M’ = (Q’,s’,A’,5’) that accepts
DELETEANY1s(L) as follows. The input to M’ is the result of deleting 1s from some
string w, and M’ needs to determine whether that string w is in L. Intuitively, M’
guesses the original string w, by nondeterministically guessing where 1s were deleted,
and simulates M running on that original string w.

M’ has the same states and start state and accepting states as M, but a different
transition function.

Q=Q
S/=S
A=A

5'(q,0) ={ 5(q,0) }

5'(q,0={ 8.1 |}

5'a.e)={ 8@ |}

M’ passes each of its input symbols to M. Between input symbols M’ uses e-transitions
to guess where 1s have been deleted and passes those deleted 1s to M. |
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3. Let INSERTONE1(L) := {x1y | xy € L} denote the set of all strings that can be obtained
from strings in L by inserting exactly one 1. For example:

INSErTONE1({g, 00, 101101}) = {1, 100, 010, 001, 1101101, 1011101, 1011011}

Prove that the language INSERTONE1(L) is regular.

Solution: Let M = (Q,s,A, &) be an arbitrary DFA that accepts the regular language L.

We construct a new NFA with e-transitions M’ = (Q’,s’,A’,5’) that accepts
INseERTONE1(L) as follows. The input to M’ is the result x1y of inserting exactly one
1 into some string xy, and M’ needs to determine whether xy is in L. If the input
string for M’ does not contain a 1, then M’ rejects it as invalid. Otherwise, intuitively,

M’ guesses which 1 in its input string was inserted, and simulates M on the rest of the
input string.

M’ consists of two copies of M, one to process the prefix x and the other to process
the suffix y. State (q, FALSE) means (the simulation of) M is in state ¢ and M’ has

not yet skipped over a 1. State (q, TRUE) means (the simulation of) M is in state g
and M’ has already skipped over a 1.

Q' = Q x {TRUE, FALSE}

s’ = (s, FALSE)

A =| Ax {TRUE} = {(q,TRUE) | q EA}

5'((q,FALSE), 0) = { (6(q,0),FALSE) }

5'((q,FaLsE), 1) = 1| (6(q,1),FaLsE), (q, TRUE)

6'((q,FaLSE), &) = {D}

5'((q, TRUE), 0) =

——

—

—

(6(q,0), TRUE)

——

6'((q, Trug), 1) ={| (8(q, 1), TRUE)

5'((q, TRUE), ) = {D}

Whenever M’ reads a 1 while its “skipped” flag is FALSE, M’ guesses whether to ignore
that 1 and sets the “skipped” flag to TRUE (because that 1 was inserted into M’s input
string) or to pass it to the simulation of M. Otherwise, M’ passes all input symbols

directly to M. Finally, M’ accepts if and only if its simulation of M accepts and M’
has skipped a 1.

—
—_——

In hindsight, we don’t need e-transitions, so we can safely delete those transitions
from our solution, along with the phrase “with e-transitions” at the beginning. [ |
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4. Let DELETEONE1(L) := {xy | x1y € L} denote the set of all strings that can be obtained
from strings in L by deleting exactly one 1. For example:

DELETEONE({g, 00, 101101}) = {01101, 10101, 10110}

Prove that the language DELETEONE1(L) is regular.

Solution: Let M = (%,Q,s,A, ) be a DFA that accepts the regular language L.

We construct an NFA with e-transitions M’ = (%,Q’,s’,A’,5’) that accepts
DELETEONE1(L) as follows. The input to M’ is the result of deleting one 1 from some
string w, and M’ needs to determine whether that string w is in L. Intuitively, M’
guesses the original string w, by nondeterministically guessing where the 1 was deleted,
and simulates M running on that original string w. Equivalently, M’ simulates the
original DFA M on the prefix x before the deleted 1, then the deleted 1 (which is not
part of M”s input), and finally the suffix y after the deleted 1.

M’ consists of two copies of M, one to process the prefix x and the other to process
the suffix y. State (g, FALSE) means (the simulation of) M is in state ¢ and M’ has
not yet reinserted a 1. State (q, TRUE) means (the simulation of) M is in state g and
M’ has already reinserted a 1.

Q' = Q x {TRUE, FALSE}

s’ = (s, FALSE)

A’ =| Ax {TruE} = {(q, TRUE) | q €A}

&'((q, FaLsE), 0) = { (5(q, ), FaLSE) }

5'((q,FaLsE), 1) = 1| (6(q,1),FALSE)

—~— —

6'((q,FaLsE),¢) ={| (6(q,1), TRUE)

6'((q, Trug),0) = {| (8(q,0), TRUE)

SR ) U [, N——

—~— —

6'((q, Trug), 1) ={| (8(q,1), TRUE)

5'((q, TRUE), &) = {D}

M’ passes each of its input symbols to M. Between input symbols, M’ guesses where
the single 1 has been deleted and passes that deleted 1 to M using an &-transition.
Finally, M’ accepts if and only if its simulation of M accepts and M’ has identified the
deleted 1. ]
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Work on these later: Consider the following recursively defined function on strings:

€ ifw=¢
evens(w) :=1 ¢ if w = a for some symbol a

b -evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w, starting with the first symbol. For
example, evens(THE©SNAIL) = HoNI and evens(GROBoGOBoGLOBoGROD) = RBGBGO<RD.
Let L be an arbitrary regular language over the alphabet . = {0, 1}.

5. Prove that the language UNEVENS(L) := {w | evens(w) € L} is regular.

Solution: Let M = (X,Q,s,A, 5) be a DFA that accepts the regular language L. We
need to construct a new machine M’ that accepts UNEVENS(L). The input to M’ is an
arbitrary string w, and M’ needs to determine whether evens(w) is in L.

We construct a DFA M’ = (%,Q’,s’,A’, 5") that accepts UNEVENS(L) as follows:

Q' =Qx{0,1}
s’ =(s,0)
A =Ax{0,1}

§'((¢,0),a)=(g,1)
§'((q,1),a) = (6(q, a),0)
M’ reads its input string w and simulates M running on evens(w).
* State (q,0) means M is in state ¢ and M’ has read an even number of symbols,
so M should ignore the next symbol (if any).
e State (q,1) means M is in state ¢ and M’ has read an odd number of symbols,

so M should read the next symbol (if any).

As usual, I started by trying to construct an NFA with e-transitions. But when I was
finished, I noticed that all my e-transitions led to @ and that all my real transitions
led to a single state, which meant I had actually built a DFA! [ |
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6. Prove that the language EVENs(L) := {evens(w) | w € L} is regular.

Solution: Let M = (X,Q,s,A, 5) be a DFA that accepts the regular language L. We
need to build a machine M’ that accepts evens(L). The input to M’ is the output
of evens(w), and M’ needs to determine whether the original string w is in L. So
intuitively, M’ guesses the odd-indexed symbols in w, and then passes the reconstituted
string w to M.

We construct an NFA M’ = (%,Q’,s’,A’, 8") that accepts evens(L) as follows:
Q =Q
s =5

A =Au{qeQq]| (g0 eAlu{geq]|sg1)eA}
6'(q,a) = {5(5(q,@),a), 5(5(q,1),a)}

M’ reads the input string evens(w) and simulates M running on string w, while
nondeterministically guessing the missing symbols in w.

* When M’ reads the symbol a from evens(w), it guesses a symbol b € % and
simulates M reading ba from w.
* When M’ finishes reading evens(w), it guesses whether w has even or odd length,

and in the odd case, it guesses the last symbol in w.

As usual, I started by trying to construct an NFA with e-transitions. But when I was
finished, I noticed that all my e-transitions led to &, so I erased them. [ |




