
CS/ECE 374 A Lab 4a Solutions Fall 2025

Let L be an arbitrary regular language over the alphabet Σ = {0,1}. Prove that the following
languages are also regular. For each language, we provide a high0level intuitive sketch of the
proof; your task is to fill in the remaining technical details. (You probably won’t get to all of these
during the lab session.)

Important note about notation: If a language L is described in set-builder notation as
{stuff | condition}, then every finite-state machine that accepts L takes stuff as input, and checks
whether stuff satisfies the stated condition.

In particular, every finite-state machine that accepts the language {foo(w) | bar(w) ∈ L} takes
an arbitrary string x as input, guesses a string w such that x = foo(w), and determines whether
the guessed string w satisfies the condition bar(w) ∈ L.

1. Let InsertAny1s(L) is the set of all strings that can be obtained from strings in L by
inserting any number of 1s anywhere in the string. For example:

InsertAny1s({ϵ, 1, 00}) = {ϵ, 1, 11, 111, . . . , 00, 100, 0111110,1110111111101111, . . .}

Prove that the language InsertAny1s(L) is regular.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We want to build a machine M ′ that accepts InsertAny1s(L).

We construct a new NFA with ϵ-transitions M ′ = (Q′, s′, A′,δ′) that accepts
InsertAny1s(L) as follows. The input to M ′ is the result of inserting 1s into some
string w, and M ′ needs to determine whether that string w is in L. Intuitively, M ′

guesses the original string w, by nondeterministically guessing which 1s were inserted,
and simulates M running on that original string w.

M ′ has the same states and start state and accepting states as M , but it has a
different transition function.

Q′ =Q

s′ = s

A′ = A

δ′(q,0) =
�

δ(q,0)
	

δ′(q,1) =
n

q, δ(q,1)
o

δ′(q,ϵ) =
¦ ©

Yes, the last box is empty. Each time M ′ reads a 1, M ′ guesses whether to ignore that 1
(because it was inserted) or to pass that 1 to M (because it was a symbol in w). In
hindsight, we don’t need any ϵ-transitions, so we can safely delete the final transition
δ′(q,ϵ) =∅ and the phrase “with ϵ-transitions” at the beginning. ■

1



CS/ECE 374 A Lab 4a Solutions Fall 2025

2. Let DeleteAny1s(L) is the set of all strings that can be obtained from strings in L by
deleting any number of 1s anywhere in the string. For example:

DeleteAny1s({ϵ, 00, 1101}) = {ϵ,0,00,01,10,101,110,1101}

Prove that the language DeleteAny1s(L) is regular.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a new NFA with ϵ-transitions M ′ = (Q′, s′, A′,δ′) that accepts

DeleteAny1s(L) as follows. The input to M ′ is the result of deleting 1s from some
string w, and M ′ needs to determine whether that string w is in L. Intuitively, M ′

guesses the original string w, by nondeterministically guessing where 1s were deleted,
and simulates M running on that original string w.

M ′ has the same states and start state and accepting states as M , but a different
transition function.

Q′ =Q

s′ = s

A′ = A

δ′(q,0) =
�

δ(q,0)
	

δ′(q,1) =
n

δ(q,1)
o

δ′(q,ϵ) =
n

δ(q,1)
o

M ′ passes each of its input symbols to M . Between input symbols M ′ uses ϵ-transitions
to guess where 1s have been deleted and passes those deleted 1s to M . ■

2



CS/ECE 374 A Lab 4a Solutions Fall 2025

3. Let InsertOne1(L) := {x1y | x y ∈ L} denote the set of all strings that can be obtained
from strings in L by inserting exactly one 1. For example:

InsertOne1({ϵ, 00, 101101}) = {1, 100, 010, 001, 1101101, 1011101, 1011011}

Prove that the language InsertOne1(L) is regular.

Solution: Let M = (Q, s, A,δ) be an arbitrary DFA that accepts the regular language L.
We construct a new NFA with ϵ-transitions M ′ = (Q′, s′, A′,δ′) that accepts

InsertOne1(L) as follows. The input to M ′ is the result x1y of inserting exactly one
1 into some string x y, and M ′ needs to determine whether x y is in L. If the input
string for M ′ does not contain a 1, then M ′ rejects it as invalid. Otherwise, intuitively,
M ′ guesses which 1 in its input string was inserted, and simulates M on the rest of the
input string.

M ′ consists of two copies of M , one to process the prefix x and the other to process
the suffix y. State (q,False) means (the simulation of) M is in state q and M ′ has
not yet skipped over a 1. State (q,True) means (the simulation of) M is in state q
and M ′ has already skipped over a 1.

Q′ =Q× {True,False}
s′ = (s,False)

A′ = A× {True}=
�

(q,True)
�

� q ∈ A
	

δ′((q,False),0) =
�

(δ(q,0),False)
	

δ′((q,False),1) =
n

(δ(q,1),False), (q,True)
o

δ′((q,False),ϵ) =
¦ ©

δ′((q,True),0) =
n

(δ(q,0),True)
o

δ′((q,True),1) =
n

(δ(q,1),True)
o

δ′((q,True),ϵ) =
¦ ©

Whenever M ′ reads a 1 while its “skipped” flag is False, M ′ guesses whether to ignore
that 1 and sets the “skipped” flag to True (because that 1 was inserted into M ’s input
string) or to pass it to the simulation of M . Otherwise, M ′ passes all input symbols
directly to M . Finally, M ′ accepts if and only if its simulation of M accepts and M ′

has skipped a 1.
In hindsight, we don’t need ϵ-transitions, so we can safely delete those transitions

from our solution, along with the phrase “with ϵ-transitions” at the beginning. ■

3



CS/ECE 374 A Lab 4a Solutions Fall 2025

4. Let DeleteOne1(L) := {x y | x1y ∈ L} denote the set of all strings that can be obtained
from strings in L by deleting exactly one 1. For example:

DeleteOne1({ϵ, 00, 101101}) = {01101, 10101, 10110}

Prove that the language DeleteOne1(L) is regular.

Solution: Let M = (Σ,Q, s,A,δ) be a DFA that accepts the regular language L.
We construct an NFA with ϵ-transitions M ′ = (Σ,Q′, s′, A′,δ′) that accepts

DeleteOne1(L) as follows. The input to M ′ is the result of deleting one 1 from some
string w, and M ′ needs to determine whether that string w is in L. Intuitively, M ′

guesses the original string w, by nondeterministically guessing where the 1was deleted,
and simulates M running on that original string w. Equivalently, M ′ simulates the
original DFA M on the prefix x before the deleted 1, then the deleted 1 (which is not
part of M ′’s input), and finally the suffix y after the deleted 1.

M ′ consists of two copies of M , one to process the prefix x and the other to process
the suffix y. State (q,False) means (the simulation of) M is in state q and M ′ has
not yet reinserted a 1. State (q,True) means (the simulation of) M is in state q and
M ′ has already reinserted a 1.

Q′ =Q× {True,False}
s′ = (s,False)

A′ = A× {True}=
�

(q,True)
�

� q ∈ A
	

δ′((q,False),0) =
�

(δ(q,0),False)
	

δ′((q,False),1) =
n

(δ(q,1),False)
o

δ′((q,False),ϵ) =
n

(δ(q,1),True)
o

δ′((q,True),0) =
n

(δ(q,0),True)
o

δ′((q,True),1) =
n

(δ(q,1),True)
o

δ′((q,True),ϵ) =
¦ ©

M ′ passes each of its input symbols to M . Between input symbols, M ′ guesses where
the single 1 has been deleted and passes that deleted 1 to M using an ϵ-transition.
Finally, M ′ accepts if and only if its simulation of M accepts and M ′ has identified the
deleted 1. ■

4



CS/ECE 374 A Lab 4a Solutions Fall 2025

Work on these later: Consider the following recursively defined function on strings:

evens(w) :=











ϵ if w= ϵ

ϵ if w= a for some symbol a

b · evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w, starting with the first symbol. For
example, evens(THE⋄SNAIL) = H⋄NI and evens(GROB⋄GOB⋄GLOB⋄GROD) = RBGBGO⋄RD.

Let L be an arbitrary regular language over the alphabet Σ= {0,1}.

5. Prove that the language Unevens(L) := {w | evens(w) ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts the regular language L. We
need to construct a new machine M ′ that accepts Unevens(L). The input to M ′ is an
arbitrary string w, and M ′ needs to determine whether evens(w) is in L.

We construct a DFA M ′ = (Σ,Q′, s′,A′,δ′) that accepts Unevens(L) as follows:

Q′ =Q× {0, 1}
s′ = (s, 0)

A′ = A× {0, 1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).

• State (q, 0) means M is in state q and M ′ has read an even number of symbols,
so M should ignore the next symbol (if any).

• State (q, 1) means M is in state q and M ′ has read an odd number of symbols,
so M should read the next symbol (if any).

As usual, I started by trying to construct an NFA with ϵ-transitions. But when I was
finished, I noticed that all my ϵ-transitions led to ∅ and that all my real transitions
led to a single state, which meant I had actually built a DFA! ■

5



CS/ECE 374 A Lab 4a Solutions Fall 2025

6. Prove that the language Evens(L) := {evens(w) | w ∈ L} is regular.

Solution: Let M = (Σ,Q, s, A,δ) be a DFA that accepts the regular language L. We
need to build a machine M ′ that accepts evens(L). The input to M ′ is the output
of evens(w), and M ′ needs to determine whether the original string w is in L. So
intuitively, M ′ guesses the odd-indexed symbols in w, and then passes the reconstituted
string w to M .

We construct an NFA M ′ = (Σ,Q′, s′,A′,δ′) that accepts evens(L) as follows:

Q′ = Q

s′ = s

A′ = A ∪
�

q ∈Q
�

� δ(q,0) ∈ A
	

∪
�

q ∈Q
�

� δ(q,1) ∈ A
	

δ′(q, a) =
�

δ
�

δ(q,0), a
�

, δ
�

δ(q,1), a
�	

M ′ reads the input string evens(w) and simulates M running on string w, while
nondeterministically guessing the missing symbols in w.

• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and
simulates M reading ba from w.

• When M ′ finishes reading evens(w), it guesses whether w has even or odd length,
and in the odd case, it guesses the last symbol in w.

As usual, I started by trying to construct an NFA with ϵ-transitions. But when I was
finished, I noticed that all my ϵ-transitions led to ∅, so I erased them. ■

6


