Prove that each of the following languages is *not* regular.

1.
$$\{0^{2^n} \mid n \ge 0\}$$

Solution (fooling set F = L): Let $F = L = \{\emptyset^{2^n} \mid n \ge 0\}$.

Let x and y be arbitrary distinct elements of F.

Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let $z = 0^{2^i}$.

- $xz = 0^{2^i} 0^{2^i} = 0^{2^{i+1}} \in L.$
- $yz = 0^{2^j} 0^{2^i} = 0^{2^i + 2^j}$. The integer $2^i + 2^j$ lies strictly between 2^j and 2^{j+1} (because i < j) and thus is not a power of 2. It follows that $yz \notin L$.

Because $xz \in L$ and $yz \notin L$, the suffix z distinguishes x and y.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$ **):** Let $F = 0^* = \{0^n \mid n \ge 0\}$.

Let x and y be arbitrary distinct elements of F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let r be any integer such that $2^r > j$, and let $z = 0^{2^r - i}$.

Then $xz = 0^i 0^{2^r - i} = 0^{2^r} \in L$.

But $yz = {\color{red}0^j} {\color{red}0^{2^r-i}} = {\color{red}0^{2^r+j-i}} \notin L$, because 2^r+j-i is not a power of 2:

$$2^{r} < 2^{r} + j - i$$
 [$i < j$]

$$\leq 2^{r} + j$$
 [$i \geq 0$]

$$< 2^{r} + 2^{r}$$
 [$j < 2^{r}$]

$$= 2^{r+1}$$
 [math]

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$, but distinguish the other way):

Let
$$F = 0^* = \{0^n \mid n \ge 0\}.$$

Let x and y be arbitrary distinct elements of F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let *r* be any integer such that $2^{r-1} > j$, and let $z = 0^{2^r - j}$.

Then $xz = 0^i 0^{2^r - j} = 0^{2^r - j + i} \notin L$, because $2^r - j + i$ is not a power of 2:

$$2^{r-1} = 2^r - 2^{r-1}$$
 [math]
 $< 2^r - j$ [$2^{r-1} > j$]
 $\le 2^r - j + i$ [$i \ge 0$]
 $< 2^r$ [$i < j$]

But $yz = {0 \choose 2} {0 \choose 2^r - j} = {0 \choose 2}^r \in L$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

2.
$$\{0^{2n}1^n \mid n \geq 0\}$$

Solution (fooling set $F = (00)^*$ **):** Let F be the language $(00)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{2i}$ and $y = 0^{2j}$ for some non-negative integers $i \neq j$.

Let $z = 1^i$.

Then $xz = 0^{2i} 1^i \in L$.

And $yz = {\color{red}0^{2j}} {\color{blue}1^i} \notin L$, because $i \neq j$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^i 1^i$.

Then $xz = 0^{2i} 1^i \in L$.

And $yz = 0^{i+j} 1^i \notin L$, because $i + j \neq 2i$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (reduction via homomorphism): Suppose to the contrary that L is the language of some DFA $M = (Q, s, A, \delta)$. Construct a new DFA $M' = (Q, s, A, \delta')$ with the same states, start state, and accepting states as M, but with a new transition function:

$$\delta'(q,a) = \begin{cases} \delta^*(q,00) & \text{if } a = 0\\ \delta(q,1) & \text{if } a = 1 \end{cases}$$

In other words, M' simulates M, but pretends that every \emptyset it reads is actually two \emptyset s. Let *doubleoh* be the following string function:

$$doubleoh(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ 00 \cdot doubleoh(x) & \text{if } w = 0x \\ 1 \cdot doubleoh(x) & \text{if } w = 1x \end{cases}$$

In particular, for any integer n, we have $doubleoh(0^n1^n) = 0^{2n}1^n$. Straightforward but tedious induction implies that our new DFA M' accepts a string w if and only if the original DFA M accepts the string doubleoh(w). It follows that $L(M') = \{0^n1^n \mid n \ge 0\}$. But we proved in class that L(M') is not regular, so we have reached a contradiction; the original DFA M cannot exist!

3. $\{0^m 1^n \mid m \neq 2n\}$

Solution (fooling set $F = (00)^*$): Let F be the language $(00)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{2i}$ and $y = 0^{2j}$ for some non-negative integers $i \neq j$.

Let $z = 1^i$.

Then $xz = 0^{2i} 1^i \notin L$.

And $yz = 0^{2j} 1^i \in L$, because $i \neq j$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^i 1^i$.

Then $xz = 0^{2i} 1^i \notin L$.

And $yz = 0^{i+j}1^i \in L$, because $i + j \neq 2i$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (reduction via closure): If *L* were regular, then the language

$$0^*1^* \setminus L = \{0^m1^n \mid m = 2n\} = \{0^{2n}1^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under complement. But we just proved that $\{0^{2n}1^n \mid n \ge 0\}$ is not regular in problem 2.

4. Strings over $\{0,1\}$ where the number of 0s is exactly twice the number of 1s.

Solution (fooling set $F = 1^*$): Let F be the language 1^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 1^i$ and $y = 1^j$ for some non-negative integers $i \neq j$.

Let $z = 0^{2i}$.

Then $xz = 1^i 0^{2i} \in L$.

And $yz = 1^{j}0^{2i} \notin L$, because $i \neq j$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^i 1^i$.

Then $xz = 0^{2i} 1^i \in L$.

And $yz = 0^{i+j}1^i \notin L$, because $i + j \neq 2i$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (reduction via closure): If *L* were regular, then the language

$$L \cap 0^*1^* = \{0^{2n}1^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under intersection. But we just proved that $\{0^{2n}1^n \mid n \ge 0\}$ is not regular in problem 2.

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]){} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution (fooling set):

Let F be the language (*.

Let x and y be arbitrary distinct strings in F.

Then $x = (^i \text{ and } y = (^j \text{ for some non-negative integers } i \neq j.$

Let $z =)^i$.

Then $xz = (^i)^i \in L$.

And $yz = {\binom{j}{i}}^i \notin L$, because $i \neq j$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

[Notice that this argument doesn't even try to consider strings with different types of brackets, because it doesn't have to. We proved that L has an infinite fooling set F; that's enough.]

Solution (reduction via closure and renaming): If L were regular, then the language

$$L' := L \cap [^*]^* = \{[^n]^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under intersection. But L' is the same as the language $\{0^n1^n \mid n \ge 0\}$, except for renaming the symbols $0 \mapsto [$ and $1 \mapsto]$, and we proved that $\{0^n1^n \mid n \ge 0\}$ in class.

Harder problems to think about later:

6. Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution (fooling set for the special case n = 2): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = \#0^i$.

Then $xz = 0^i \# 0^i \in L$.

And $yz = 0^j \# 0^i \notin L$, because $i \neq j$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

Notice that this argument doesn't even try to consider strings with more than one #, because it doesn't have to. We proved that L has an infinite fooling set F; that's enough.

7. $\{w \in (0+1)^* \mid w = x1^n \text{ for some string } x \text{ with } |x| = n\}$, or less formally, binary strings whose right half contains only 1s.

Solution (Fooling set $F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j (otherwise swap).

Let $z = 1^i$.

Then $xz = 0^i 1^i \in L$.

Also $yz = 0^j 1^i \notin L$. There are two cases to consider:

- If |yz| = i + j is odd, then yz is not in L.
- Suppose |yz| = i + j is even. The right half of yz has length (i + j)/2 > i and thus contains at least one 0, so again yz is not in L.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.

8.
$$\{0^{n^2} \mid n \ge 0\}$$

Solution (fooling set F = L): Let x and y be arbitrary distinct strings in L.

Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $i > j \ge 0$.

Let $z = 0^{2j+1}$.

Then $xz = 0^{i^2+2j+1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i+1)^2$.

On the other hand, $yz = 0^{j^2+2j+1} = 0^{(j+1)^2} \in L$

Thus, z distinguishes x and y.

We conclude that L is a fooling set for L.

Because L is infinite, L cannot be regular.

Solution (fooling set $F = 0^*$ **):** Let x and y be arbitrary distinct strings in 0^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$.

Let $z = 0^{i^2 + i + 1}$.

Then $xz = 0^{i^2 + 2i + 1} = 0^{(i+1)^2} \in L$.

On the other hand, $yz = 0^{i^2+i+j+1} \notin L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that 0^* is a fooling set for L.

Because 0^* is infinite, L cannot be regular.

Solution (fooling set $F = 0000^*$ **):** Let x and y be arbitrary distinct strings in 0000^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$.

Let $z = 0^{i^2 - i}$.

Then $xz = 0^{i^2} \in L$.

On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because

$$(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$$

(The first inequality requires $i \ge 2$, and the second requires $j \ge 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is a fooling set for L.

Because 0000^* is infinite, L cannot be regular.

9. $\{w \in (0+1)^ \mid w \text{ is the binary representation of a perfect square}\}$

Solution (fooling set): We design an infinite fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2} 10^k 1 \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = 1(00)^*1$, and let x and y be arbitrary distinct strings in F.

Then $x = 10^{2i-2}$ 1 and $y = 10^{2j-2}$ 1, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let $z = 0^{2i} 1$.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of the integer $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< 2^{2i+2j} + 2^{2i+1} + 1$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.