
CS/ECE 374 A Homework 5 Solutions Fall 2025

1. (a) Describe an algorithm to find the poisoned bottle using at most O(log n) tests. (This
is best possible in the worst case.)

Solution (binary search): Arbitrarily label the bottles from 0 to n− 1. In the
following algorithm, each Taster performs at most one test.

HalloMyNameIs(n):
lo← 0
hi← n− 1

while lo< hi
mid← ⌊(lo+ hi)/2⌋
T ← new Taster
T tests bottles lo through mid
if T is mostly dead

hi←mid
else

lo←mid+ 1

return lo

The algorithm performs one test and then recursively searches half the bottles.
So the number of tests obeys the recurrence T (n)≤ 1+ T (⌈n/2⌉) with the base
case T (1) = 0, which implies T (n)≤ ⌈log2 n⌉= O(log n). ■

Solution (one bit at a time): Arbitrarily label the bottles from 0 to n − 1 in
binary. For any non-negative integer i, let Si denote the subset of all bottles
whose label has its ith bit equal to 1. For example, S0 is the set of all bottles with
odd labels. Exactly ⌈log2 n⌉ of these sets are non-empty. Similarly, arbitrarily
label the first ⌈log2 n⌉ Tasters from 0 to ⌈log2 n⌉ − 1.

InigoMontoya(n):
poison← 0 〈〈poisoned bottle’s label〉〉
for i← 0 to ⌈log2 n⌉ − 1

Taster i tests subset Si

if Taster i is mostly dead
poison← poison+ 2i

return poison

The algorithm clearly performs one test per iteration of the main loop, so the
numebr of tests is ⌈log2 n⌉= O(log n). ■

Rubric: 2 points. These are not the only correct solutions.

1

CS/ECE 374 A Homework 5 Solutions Fall 2025

(b) Now suppose two of the n bottles have been poisoned. Describe an algorithm to
identify both poisoned bottles, using as few tests as possible in the worst case.

Solution:
YouKilledMyFather(n):
lo← 0
hi← n− 1

while lo< hi
mid← ⌊(lo+ hi)/2⌋
T1, T2← two new Tasters
T1 tests bottles lo through mid
T2 tests bottles mid+ 1 through hi
if T1 and T2 are both mostly dead

find the poison in bottles lo through mid via part (a)
find the poison in bottles mid+ 1 through hi via part (a)

else if only T1 is mostly dead
hi←mid

else
lo←mid+ 1

In each iteration of the main loop, the algorithm performs two tests and then
either recursively searches half the bottles or invokes an algorithm for part (a).
Thus, there number of tests obeys the recurrence

T (n)≤ 2+max
�

T (⌈n/2⌉), O(log n)
	

,

which implies T (n) = O(log n). (More precisely, T (n)≤ 2⌈log2 n⌉.) ■

Rubric: 4 points. This is not the only correct solution.

2

CS/ECE 374 A Homework 5 Solutions Fall 2025

(c) Finally, suppose the poisoners try to evade the Royal Tasters by reducing the amount
of iocaine in each poisoned bottle. Now when a Taster tests a set S of wine bottles,
they become mostly dead if and only if both poisoned bottles are in S. Describe an
algorithm to find both poisoned bottles using as few tests as possible in the worst case.

Solution: Just for fun, I’ll write this algorithm recursively instead of iteratively,
using sets of bottles as arguments instead of indices.

PrepareToDie(S):
n← |S|
if n= 2

return both bottles in S

T1, T2← two new Tasters
A← any subset of ⌊n/2⌋ bottles in S
T1 tests bottles in A
T2 tests bottles in S \ A

if T1 is mostly dead
return PrepareToDie(A)

else if T2 is mostly dead
return PrepareToDie(S \ A)

else 〈〈A contains one poisoned bottle〉〉
return Obviously(A,S \ A)

〈〈Find two poisoned bottles, one in A and one in B〉〉
Obviously(A, B):
if |A|< |B|

swap A↔ B
if |A|= 1 〈〈and therefore |B|= 1〉〉

return the only bottles in A and B

T ← new Taster
C ← any subset of ⌈|A|/2⌉ bottles in A
T tests bottles in C ∪ B

if T is mostly dead
return Obviously(B, C)

else
return Obviously(B,A\ C)

PrepareToDie recurses at most ⌈log2 n⌉ times, performing two tests at
each level of recursion, before either finding both poisoned bottles or calling
Obviously. Similarly, each recursive call to Obviously performs at most one
test and shrinks one of the two sets by a factor of 2. In more detail, the number
of tests performed by Obviously(A, B) satisfies the following recurrence, where
n= |A| and m= |B|, assuming n/2≤ m≤ n:

T (n, m)≤

¨

0 if n= 1

1+ T (m, ⌈n/2⌉) otherwise

Expanding the recurrence once gives us T (n, n) = 2+ T (⌈n/2⌉, ⌈n/2⌉), which
implies T (n, n)≤ 2⌈log2 n⌉.

3

CS/ECE 374 A Homework 5 Solutions Fall 2025

We conclude that the total number of tests is at most 2⌈log2 n⌉= O(log n).
Sweet! Coins! ■

Solution (three subsets): We’ll again write this algorithm using sets of bottles.

StopSayingThat(S):
n← |S|
if n= 2

return both bottles in S

T1, T2← two new Tasters
A← any subset of ⌊n/3⌋ bottles in S
B← any subset of ⌈n/3⌉ bottles in S \ A
C ← S \ (A∪ B)
T1 tests bottles in A∪ B
T2 tests bottles in B ∪ C

if T1 is mostly dead
return StopSayingThat(A∪ B)

else if T2 is mostly dead
return StopSayingThat(B ∪ C)

else 〈〈B contains neither poisoned bottle〉〉
return StopSayingThat(A∪ C)

The algorithm performs two tests and recursively tests a set containing at most
⌈2n/3⌉ bottles. The number of tests obeys the recurrence T (n)≤ 2+ T (⌈2n/3⌉),
implying the total number of tests is at most 2⌈log3/2 n⌉= O(log n). ■

Rubric: 4 points. As usual these are not the only solutions.

4

CS/ECE 374 A Homework 5 Solutions Fall 2025

2. (•) Practice only. Do not submit solutions.
Describe how to find an arbitrary bottle of rum (not necessarily closest to the northwest
corner) in O(log n) time.

Solution: If n= 1, return the only bottle in the only square.
Otherwise, split the grid into four (n/2)× (n/2) quadrants, and test each

quadrant using the Device. At least one of the quadrants contains a bottle of
rum, so at least one of the tests is successful. Recurse in any quadrant that made
the Device happy.

The running time of this algorithm on an n× n grid obeys the binary-search
recurrence T (n) = O(1) + T (n/2), so the algorithm runs in O(logn) time, as
required. ■

Rubric: 0 points; practice only

(a) What is the running time (the number of tests) of the algorithm that tests the
northwest quadrant and then recursively searches three quadrants?

Solution: The running time obeys the recurrence T (n) = 1 + 3T (n/2). The
level sums of the recursion tree define an increasing geometric series, which is
dominated by the number of leaves. The recursion tree has 3ℓ nodes at level
ℓ, and the depth of the recursion tree is log2 n. So the number of leaves is
3log2 n = nlog3 2. So the algorithm runs in O(nlog2 3) = O(n1.585) time, just like
Karatsuba’s algorithm. ■

Rubric: 2 points. This is not the only correct solution.

5

CS/ECE 374 A Homework 5 Solutions Fall 2025

(b) Now suppose we split Grid Island into nine (n/3) × (n/3) subgrids, test all nine
subgrids using the Device, and then recurse on a smaller subset of those nine subgrids.
How many recursive calls do we need to make in the worst case? Prove your answer
is correct. What is the running time of the resulting algorithm?

Solution: We need to make at most five recursive calls in the worst case. There
are four cases to consider, illustrated below.

Recurse! Recurse!

Recurse! Recurse! Recurse!

Recurse! Recurse!

Recurse!

Recurse!

Recurse! Recurse!

Recurse!

Recurse!

Recurse!

Recurse!Recurse!

• If the northwest block has any rum, then the closest rum is either in that
block or one of its two neighbors, so we only need to recursively search
three block.

• If the northwest block is empty, but at least one of its two neighbors is not,
then the closest rum is in one of five block on or just above the diagonal.

• If the three block closest to the northwest corner are all empty, but at least
one of the block along the diagonal is not, then the closest rum is in one of
five block on or just below the diagonal.

• Finally, if the six block closest to the northwest corner are all empty, the
closest rum is in one of the other three block.

We test at most six rectangles and make at most five recursive calls, so the running
time of our obeys the recurrence T (n)≤ 6+ 5T (n/3). The usual recursion-tree
analysis implies T(n) = O(nlog3 5) = O(n1.465) time. ■

Rubric: 4 points = 2 for “at most five” + 2 for O(nlog3 5). This is not the only correct solution with
this running time.

A correct and correctly analyzed algorithm with more recursive calls is worth ½ point less
for each additional recursive call. For example, an algorithm that makes 8 recursive calls in the
worst case is worth at most 2½points.

6

CS/ECE 374 A Homework 5 Solutions Fall 2025

⋆(c) Describe an even faster algorithm to find the closest bottle of rum.

Solution (Generalize part (b)): We can generalize the algorithm in part (b).
For any integer k > 1, we can split the n × n grid into (n/k) × (n/k) blocks
(ignoring rounding).

Let B be any block containing rum that is closest to the ship. Then the closest
bottle to the ship must lie inside a block that is either on the same diagonal
with B or the next lower diagonal. All higher blocks are known to be empty, and
all lower blocks are too far away from the ship. Thus, we need to recursively
search at most 2k − 1 blocks.

In the figure below, suppose the block with the heavy green outline contains
rum, but the red boxes with Xs do not. Then the closest bottle to the ship must
lie between the dashed lines, and therefore not in any of the red Xed blocks
above or in any of the shaded blocks below the dashed lines.

(Of course, we don’t need to recursively search any block that the Device has
already told us is empty, but in the worst case, every interesting block contains
at least one bottle of rum.)

The running time of the resulting recursive algorithm obeys the recurrence

T (n)≤ k2 + (2k− 1) · T (n/k),

which has the solution T (n) = O(k2nlogk(2k−1)). By setting k to an appropriate
constant, we can make the exponent arbitrarily close to 1, but we need a very
large k to get an exponent close to 1. For example, if k = 64, the running
time becomes O(nlog64 127) = O(n1.1648), and if k = 232, the running time is
O(nlog(233−1)/ log(232)) = O(n33/32) = O(n1.03125). ■

Rubric: 4 points. “Arbitrarily close to linear” is enough for full credit.

7

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (Generalize part (b) even more): We can use the same recursive
algorithm as the previous solution, with the same running-time recurrence

T (n) ≤ k2 + (2k− 1) · T (n/k),

but now instead of using the same constant k at every level of recursion, we let k
be an increasing function of n. Thus, we partition into fewer blocks at deeper
levels of recursion.

The best function of n turns out to be k =
p

n. The resulting running time
now obeys the recurrence

T (n) ≤ n + 2
p

n · T (
p

n).

(Yes, I intentionally dropped the −1.) We can solve this non-standard recurrence
using recursion trees. The first few levels of the recursion tree have the following
structure:

• Level 0 has one node with value n, so the level sum is n.
• Level 1 has 2

p
n nodes, each with value

p
n, so the level sum is 2n.

• Level 2 has 4n3/4 nodes, each with value n1/4, so the level sum is 4n.

More generally, the sum of nodes at each level ℓ is 2ℓn. The level sums form
an increasing geometric series, so the running time is dominated by the bottom
level. Each node at level ℓ represents a recursive problem of size n2−ℓ . If we
arbitrarily declare problem size 2 to be our base case, the tree bottoms out when

n2−ℓ = 2 ⇐⇒ 2−ℓ log2 n= 1 ⇐⇒ 2ℓ = log2 n ⇐⇒ ℓ= log2 log2 n

We conclude that T (n) = O(2log2 log2 nn) = O(n logn).
Intuitively, when k = o(

p
n), the recursion tree has larger depth, so the

number of leaves 2ℓn is bigger, so the overall running time is bigger. On the
other hand, when k is significantly larger than

p
n, the level sums grow more

quickly, so again the overall running time is bigger. ■

Rubric: 5 points. This is more detail than necessary for full credit.

8

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (binary search in each row): The closest bottle of rums must be the
leftmost bottle in its row. We can find the leftmost bottle in each row in O(log n)
time using binary search, as follows:

ReallyBadEggs(n):
bestdist←∞
for i← 1 to n

if Device(1, 1, i, n) farts
continue 〈〈skip the rest of this iteration〉〉

〈〈Binary search!〉〉
lo← 1
hi← n

while hi− lo< 3
mid← ⌊(lo+ hi)/2⌋
if Device(1, 1, i,mid) chimes

hi←mid
else

lo←mid+ 1

〈〈leftmost bottle in row i is in column hi= lo〉〉
if i + lo< bestdist

bestdist← i + lo
best← (i, lo)

return best

The algorithm uses the device at most O(log n) times on each row, so the overall
algorithm runs in O(n logn) time. ■

Rubric: 5 points. This is more detail than necessary for full credit.

9

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (either madness or brillance): We can combine the two previous
solutions as follows. First, we split the grid into O(k2) blocks, each of size
(n/k) × (n/k). Then for each row of blocks, we find the leftmost block that
contains a bottle using binary search, as in the previous solution. From these
O(k) candidate blocks, let B be the block closest to the northwest corner. The
analysis in part (a) implies that we can find the closest bottle by recursively
searching at most 2k− 1 blocks.

The running time of the resulting algorithm satisfies therecurrence

T (n)≤ O(k log k) + (2k− 1) · T (n/k).

As in the first solution, we can make T (n) = O(n1+ϵ) for any ϵ > 0 by choosing
an appropriately large constant k (that depends on ϵ). But just like the second
solution, we can do even better by allowing k to be an incerasing function of n.

The best choice of k for this algorithm turns out to be k = n/ lg n, meaning we
partition the grid into blocks of size lg n× lg n. (Here lg n is standard shorthand
for log2 n.) The running time of the resulting algorithm satisfies the recurrence

T (n) ≤ O(n) +
2n
lg n
· T (lg n).

As usual we can solve this recurrence using recursion trees. The first few levels
of the recursion tree have the following structure:

• Level 0 has one node with value n, so the level sum is n.
• Level 1 has 2n

lg n nodes, each with value lg n, so the level sum is 2n.

• Level 2 has 2n
lg n ·

2 lg n
lg l gn =

4n
lg lg n nodes, each with value lg lg n, so the level sum

is 4n.

More generally, the sum of nodes at each level ℓ is 2ℓn. As before, the level
sums form an increasing geometric series, so the running time is dominated by
the deepest level. Each node at level ℓ represents a recursive problem of size
lg(ℓ) n = lg(lg(ℓ−1) n). If we arbitrarily declare problem size 1 to be our base
case, the tree bottoms out at level ℓ= lg∗ n, where lg∗ is the iterated logarithm
function, defined recursively as follows

lg∗ n=

¨

0 if n≤ 1

1+ lg∗(lg n) otherwise

Intuitively, lg∗ n is the number of times we can take logarithms, starting with
the value n, until the result is at most 1. For all practical purposes, lg∗ n is a
constant—in particular, lg∗ n ≤ 4 for all n ≤ 265536—but this is a theory class;
we don’t care about such insignificant values of n.

We conclude that our recursive algorithm runs in O(n2lg∗ n) time. ■

Rubric: 7 points. This is more detail than necessary for full credit.

10

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (Optimize part (a) nonrecursively): We can solve actually this prob-
lem in O(n) time by modifying the algorithm from part (a), using the analysis
in the first solution. Instead of searching each block recursively, we iteratively
consider finer and finer decompositions of the grid into blocks, and we use the
results from each iteration to select a subset of smaller blocks to test in the next
iteration.

Without loss of generality, assume that n is a power of 2; otherwise, we can
imagine extra empty rows and columns to the south and east.

The algorithm from part (a) recursively searches a decomposition of the n×n
grid called a quadtree. For each integer k, the kth level of the quadtree partitions
the n× n grid into (n/2k)× (n/2k) squares, which I’ll call k-blocks. Thus, the
entire grid is a 0-block; the four quadrants are 1-blocks, and more generally,
each k-block is partitioned into four (k+ 1)-blocks.

For any integer k, the goal of the kth iteration of our algorithm finds a k-block
closest to the ship that contains at least one bottle of rum. Let Bk−1 be the
(k− 1)-block found in the (k− 1)th iteration; in particular B0 is the entire grid.
The analysis in part (b) implies that our target bottle lies in a (k− 1)-block that
is either on the same diagonal as Bk−1 or on the next diagonal below. There are
at most 2(n/2k)− 1< 2n/2k interesting (k− 1)-blocks.

In the kth iteration, we break each of the interesting (k− 1)-blocks into four
k-blocks, use the Device to test each of those k-blocks, and finally define Bk to
be the k-block closest to the ship that made the Device happy (breaking ties
arbitrarily). Altogether we apply the Device to at most 8n/2k k-blocks.

Summing over all iterations, we conclude that the total number of tests is
(very conservatively) at most

log2 n
∑

k=0

8n/2k = 8n ·
log2 n
∑

k=0

1/2k < 8n ·
∑

k≥0

1/2k = 16n = O(n).

(Yes, we could reduce the constant factor 16 by improving the algorithm and/or
applying more careful analysis, but why bother? O(n) is already O(n).)

The figure on the next page shows the algorithm in action.

11

CS/ECE 374 A Homework 5 Solutions Fall 2025

■

Rubric: 9 points.

12

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (it’s pronounced “egregious”): We once again follow a careful im-
plementation the algorithm for part (a), but we keep track of the closest bottle
that we have discovered so far, and we ignore any recursive call that explores a
cell whose squares are further from the northwest corner than our candidate
bottle.

Our recursive algorithm takes five input arguments:

• i and j are the indices of the top row and left column of the block we are
exploring

• w is the width (= height) of the block we are exploring
• besti and bestj are the row and column indices for the closest bottle we

found before making this recursive call.

The algorithm returns the new values of besti and bestj, that is, the coordinates of
the closest bottle found either before or during the recursive call. The top-level
function call is BlackPearl(1,1, n,∞,∞). To simplify the algorithm, assume
without loss of generality that n is a power of 2; otherwise, we can imagine extra
empty rows and columns to the south and east.

BlackPearl(i, j, w, besti, bestj):
if i + j > besti+ bestj 〈〈They’re out of range!〉〉

return besti, bestj
if Device(i, j, i +w, j +w) farts 〈〈Why is the rum gone?〉〉

return besti, bestj
if w= 1

return i, j 〈〈A better one.〉〉
〈〈Now where is that monkey? I want to shoot something.〉〉
besti, bestj← BlackPearl(i, j, w/2, besti, bestj)
besti, bestj← BlackPearl(i +w/2, j, w/2, besti, bestj)
besti, bestj← BlackPearl(i, j +w/2, w/2, besti, bestj)
besti, bestj← BlackPearl(i +w/2, j +w/2, w/2, besti, bestj)
return besti, bestj

I claim that this algorithm runs in O(n) time.
As in the previous solution, for each integer k, subdivide the grid into 4k

squares, each of width and height n/2k, which I’ll call k-blocks. Each call
BlackPearl(i, j, w, ·, ·) explores a distinct k-block, where k = lg(n/w). We call
a k-block interesting if BlackPearl explores that block and its four children;
interesting blocks correspond to the non-leaf nodes in the recursion tree of
BlackPearl. The overall running time of our algorithm is O(1) times the
number of interesting blocks.

Pick an integer k, and let w= n/2k. Let B and B′ be two interesting k-blocks
with the same top row i, and left columns j and j′, respectively. Without loss of
generality, assume j < j′; because B and B are disjoint, we have j′ ≥ j +w.

The order of recursive calls implies that BlackPearl explores B. Because B
is interesting, there is at least one bottle (bi, b j) such that i ≤ bi < i + w and
j ≤ b j < j + w. Thus, when BlackPearl finishes exploring BlackPearl, we

13

CS/ECE 374 A Homework 5 Solutions Fall 2025

have besti+ bestj≤ bi + b j < i + j + 2w. Similarly, because B′ is interesting, we
must have i+ j′ ≤ besti+bestj< i+ j+2w when BlackPearl starts exploring B′,
which implies j′ < j + 2w. But j′ − j must be a multiple of w, so j′ = j +w. We
conclude that B′ is directly to the right of B.

We have just argued that each row of k-blocks contains at most two interesting
k-blocks, which implies that there are at most 2·2k interesting k-blocks altogether.
Thus, the total number of interesting blocks of all sizes is at most

lg n
∑

k=0

2 · 2k ≤ 2 ·
lg n
∑

k=0

2k = 2 · (2lg n+1 − 1) = 2(2n− 1) = 4n− 4.

We conclude that BlackPearl runs in O(n) time, as claimed.
The following figure shows all the non-interesting children of interesting

blocks (that is, the leaves of the recursion tree) in one run of BlackPearl. Gray
blocks are out of range; red blocks with Xs are in range but the rum is gone;
solid green blocks are bottles of rum.

■

Rubric: 10 points = 6 points for the algorithm + 4 points for the time analysis.

14

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution (more what you’d call “guidelines”): An even simpler non-recursive
algorithm finds a small subset of bottles that is guaranteed to contain the closest
bottle, using the Device only O(n) times.

Let’s call square (i, j) pirate-optimal if it contains the only bottle of rum
in rectangle with corners (1, 1) and (i, j). Each row or column of the grid
contains most one pirate-optimal square. The pirate-optimal squares define a
staircase shape called the pirate-front. In the figure below, the red staircase is
the pirate-front, the green squares just below the corners of the pirate-front are
the pirate-optimal bottles, and the two bottles closest to the ship are circled.

The following algorithm identifies all pirate-optimal bottles in O(n) time.

IGotAJarOfDirt(n):
row← n
col← 1
found← False
while row≥ 1 and col≤ n

if Device(1, 1, row, col) farts
if found

(row+ 1, col) is pirate-optimal
found← False
col← col+ 1

else 〈〈DEVICE(1,1, row, col) chimes〉〉
found← True
row← row− 1

if row= 0 and found
(1, col) is pirate-optimal

Each iteration of the while loop either increments col or decrements row, and
therefore decrements row − col. Initially, row − col = n − 1. When the loop
terminates. either row = 0 and col ≤ n, or row ≥ 1 and col = n+ 1; in either
case, we have row− col≥ −n. We conclude that our algorithm uses the Device
at most 2n − 1 times.

The closest bottle to our ship is clearly pirate-optimal, so Once we’ve identified
all the pirate-optimal bottles, we can find the closest one by brute force, using
no additional tests. ■

Rubric: 10 points. These are not the only O(n)-time solutions, but this is simplest one I know.

15

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solution

(“You cheated.” “Pirate.”): We claim that no correct algorithm can
use the Device fewer than n− 1 times even if we’re promised there is exactly
one closest bottle and its distance is exactly n.

Imagine an all-powerful Adversary who pretends to present our algorithm
with a fixed instance of the problem, but in fact changes their instance on the
fly each time the algorithm uses the Device. You know, like how you used to
cheat at 20 questions with your little brother. If the algorithm claims to find the
closest bottle after using the Device less than n− 1 times, the Adversary will
reveal an actual instance that is consistent with all Device’s responses, but where
the algorithm’s claimed closest bottle is incorrect.

Initially, the Adversary creates an “instance” of the problem where

• every square of distance n+ 1 or greater holds a bottle of rum,
• every square of distance n− 1 or less is empty, and
• every square of distance exactly n holds a ghost bottle, which the Adversary

may later reveal to be a real bottle or nothing at all.

At the end of the algorithm, the Adversary will reveal that at least one ghost
bottle is actually real.

Each time the algorithm uses the Device, the Adversary responds as follows:

• If the algorithms tests a rectangle containing no real bottles or ghost bottles,
the Adversary makes the Device fart.

• If the algorithm tests a rectangle containing at least one real bottle, the
Adversary makes the Device chime.

• The first n− 1 times the algorithm tests a rectangle containing exactly one
ghost bottle and no real bottles, the Adversary destroys that ghost bottle
and makes the Device fart. See the figure below.

• Finally, the nth time the algorithm tests a rectangle containing exactly one
ghost bottle and no real bottles, only one ghost bottle is left. The Adversary
makes that last ghost bottle real and makes the Device chime.

Any rectangle that contains more than one ghost bottle also contains a real
bottle, so these cases are exhaustive.

?

?

?

?

?

?

?

?

?

In the first two cases, the Device’s response gives the algorithm no information
whatsoever about which ghost bottles are real. At all times, the remaining ghost

16

CS/ECE 374 A Homework 5 Solutions Fall 2025

bottles are precisely those that have never been in the southeast corner of a test
rectangle.

Now consider what happens if the algorithm tries to report a closest bottle
while there is still more than one ghost bottle (and in particular, after using the
Device fewer than n− 1 times). Because we are promised that the closest bottle
has distance n, the algorithm must report a square at distance n.

• If the algorithm reports a square at distance n that does not contain a ghost
bottle, the Adversary makes all ghost bottles real.

• If the algorithm reports a square that contains a ghost bottle, the Adversary
destroys that ghost bottle and makes all other ghost bottles real.

In both cases, the Adversary reveals an instance that is consistent with all of
the Device’s responses, that has at least one bottle at distance n, and where the
Algorithm has incorrectly reported an empty square instead of a bottle. As far as
the algorithm can tell, that was the instance all along!

Too bad we insisted on only accepting the closest bottle to the port. ■

Rubric: 0 points. We never asked you to show a lower bound. This is not the only

solution

.

17

CS/ECE 374 A Homework 5 Solutions Fall 2025

⋆3. Practice only. Do not submit solutions.

The following variant of the infamous StoogeSort algorithm1 was discovered by the
British actor Patrick Troughton during rehearsals for the 20th anniversary Doctor Who
special “The Five Doctors”.2

WhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
WhoSort(A[1 .. 3k]) 〈〈Hartnell〉〉
WhoSort(A[2k+ 1 .. n]) 〈〈Troughton〉〉
WhoSort(A[1 .. 3k]) 〈〈Pertwee〉〉
WhoSort(A[k+ 1 .. 4k]) 〈〈Davison〉〉

(a) Prove by induction that WhoSort correctly sorts its input. [Hint: Where can the
smallest k elements be?]

Solution: Let n be an arbitrary no-negative integer, let A[1 .. n] be an arbitrary
array, and assume that WhoSort correctly sorts any array of size less than n.
Assume that n≥ 13, since otherwise correctness is trivial.

Intuitively, WhoSort partitions the input array A into five chunks, four of
size k = ⌈n/5⌉ and one of size n− 4k ≤ n/5≤ k:

A[1 .. k], A[k+ 1 .. 2k], A[2k+ 1 .. 3k], A[3k+ 1 .. 4k], A[4k+ 1 .. n]

The inequality n≥ 13 implies 4⌈n/5⌉ ≤ n, so all five chunks lie within the bounds
of the original input array. (When n= 16, the last chunk is empty, but that’s not
a problem.) Each recursive call to WhoSort processes three consecutive chunks,
which comprise an subarray of size at most 3k. The assumption n ≥ 13 also
implies 3⌈k/5⌉< n, so by the induction hypothesis, the recursive calls correctly
sort their respective subarrays.

Call an element of the input array small if it is one of the k smallest elements,
large if it is one of the n− 4k ≤ k largest elements, and medium otherwise.
Consider the locations of these classes of elements after each recursive call to
WhoSort.

• The inductive hypothesis implies that Hartnell moves all small elements in
the first three chunks to chunk 1, and moves all large elements in the first
three chunks to chunk 3. Thus, after Hartnell’s sort, all small elements are
in chunks 1, 4, and 5, and all large elements are in chunks 3, 4, and 5.

• The inductive hypothesis implies that after Troughton’s sort, all small
elements are in chunks 1 and 3, and all large elements (and nothing else)

1https://en.wikipedia.org/wiki/Stooge_sort
2Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five

Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but
he wasn’t really there—to the extent that any fictional character in a television show about a time traveling wizard
arguing with several other versions of himself about immortality can be said to be “really” “there”.)

18

https://en.wikipedia.org/wiki/Stooge_sort

CS/ECE 374 A Homework 5 Solutions Fall 2025

are in chunk 5. Moreover, chunk 5 is sorted; all large elements are in their
correct final positions. The rest of the algorithm does not modify chunk 5.

• The inductive hypothesis implies that after Pertwee’s sort, all small elements
(and nothing else) are in chunk 1, in sorted order; thus, all small elements
are in their correct final positions. The rest of the algorithm does not modify
chunk 1. At this point, chunks 2, 3, and 4 contain all the medium elements
and nothing else.

• Finally, the inductive hypothesis implies that Davison sorts chunks 2, 3,
and 4, moving all the medium elements into their final correct positions.

We conclude that WhoSort correctly sorts the array A[1 .. n], as claimed. ■

I hate good wizards in fairy tales; they always turn out to be him.
— River Song [Alex Kingston], “The Pandorica Opens”, Doctor Who 5(12): 2010.

(b) Would WhoSort still sort correctly if we replaced “if n< 13” with “if n< 4”? Justify
your answer.

Solution: No. When n= 6, the modified algorithm would fall into an infinite
loop. Specifically, k = ⌈6/5⌉ = 2, so the first recursive call would attempt to
recursively sort the entire array. ■

Solution: No. When n= 11, we have k = ⌈11/5⌉= 3, so the last recursive call
would attempt to recursively sort the “subarray” A[4 .. 12], which exceeds the
bounds of the original input array. ■

(c) Would WhoSort still sort correctly if we replaced “k = ⌈n/5⌉” with “k = ⌊n/5⌋”?
Justify your answer.

Solution: No. The modified algorithm would fail when n= 14 (and therefore
k = 2), because there is not enough overlap between the recursive subarrays to
carry all large elements to the last chunk. For example, the algorithm would
modify the array NMLKJIHGFEDCBA as follows:

Sort A[1 .. 6] IJKLMNHGFEDCBA

Sort A[5 .. 14] IJKLABCDEFGHMN

Sort A[1 .. 6] ABIJKLCDEFGHMN

Sort A[3 .. 8] ABCDIJKLEFGHMN

In contrast, the original algorithm (with k = 3) sorts the same array as follows.

Sort A[1 .. 9] FGHIJKLMNEDCBA

Sort A[7 .. 14] FGHIJKABCDELMN

Sort A[1 .. 9] ABCFGHIJKDELMN

Sort A[4 .. 12] ABCDEFGHIJKLMN

■

19

CS/ECE 374 A Homework 5 Solutions Fall 2025

(d) What is the running time of WhoSort? (Set up a running-time recurrence and then
solve it, ignoring the floors and ceilings.)

Solution: The running time obeys the recurrence T (n) = 4T (3n/5) + O(1).
The level sums of the recursion tree form an increasing geometric series, so the
solution is T (n) = O(4log5/3 n) = O(nlog5/3 4) = O(n2.7138309). ■

(e) Forty years later, 15th Doctor Ncuti Gatwa discovered the following optimization
to WhoSort, which uses the standard Merge subroutine from mergesort, which
merges two sorted arrays into one sorted array.

〈〈Sort A〉〉
NuWhoSort(A[1 .. n]) :
if n< 13

sort A by brute force
else

k = ⌈n/5⌉
NuWhoSort(A[1 .. 3k]) 〈〈Grant〉〉
NuWhoSort(A[2k+ 1 .. n]) 〈〈Whittaker〉〉
Merge(A[1 .. 2k], A[2k+ 1 .. 4k]) 〈〈Tennant〉〉

What is the running time of NuWhoSort?

Solution: The running time of NuWhoSort obeys the recurrence T (n) =
2T (3n/5) +O(n). The level sums of the recursion tree still form an increasing
geometric series, but growing only half as fast as the recursion tree for WhoSort.
The solution is T (n) = O(2log5/3 n) = O(nlog5/3 2) = O(n1.3569155).

And yes, the algorithm is still correct. ■

20

CS/ECE 374 A Homework 5 Solutions Fall 2025

Solved problems

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . ,qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume
that all 2n of these numbers are distinct. No proof of correctness is necessary, but you
should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. ⌊n/2⌋] bLue.
• Color the elements in the Right half Q[⌊n/2⌋+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. ⌊n/2⌋].
• Recursively count inversions in (and sort) the red subarray Q[⌊n/2⌋+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

21

CS/ECE 374 A Homework 5 Solutions Fall 2025

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count
return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ count
else if i > m

B[k]← A[j]; j← j + 1; count← count+ 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ count
else

B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always equal
to j −m− 1, so we don’t need an additional variable. (Proof: Initially, j = m+ 1 and
count= 0, and we always increment j and count together.)

22

CS/ECE 374 A Homework 5 Solutions Fall 2025

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0

for k← 1 to n
if j > n

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else if i > m

B[k]← A[j]; j← j + 1
else if A[i]< A[j]

B[k]← A[i]; i← i + 1; total← total+ j −m − 1
else

B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs inO(n) time, so the overall running time is stillO(n log n),
as required. ■

Rubric: 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count)
+ 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only
correct O(n log n)-time algorithm. No proof of correctness is required.

Max 3 points for a correct O(n2)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algo-
rithm performs—not how the algorithm works, but the relationship between its input and its output.
Each English description is worth 25% of the credit for that algorithm (rounding to the nearest
half-point). For example, the COUNTREDBLUE algorithm is worth 4 points (“conquer”); the English
description alone (“For each blue element Q[i] of the now-sorted array Q[1 .. n], count the number of
smaller red elements Q[j].”) is worth 1 point.

23

